ECE 2210/00 Exam 1 given: Spring 10 (The space between problems has been rem oved.)

1. (21 pts) Find the values below. Show your work.

Ideal ammeter
reads 15 mA .

Note: feel free to show work \& answers right on the schematic
a) $\mathrm{R}_{5}=$?
b) $\mathrm{V}_{\mathrm{S}}=$?
c) $\mathrm{P}_{\mathrm{S}}=$?
b) $\mathrm{V}_{\mathrm{S}}=$?
c) $\mathrm{P}_{\mathrm{S}}=$?

2. (22 pts) Use the method of superposition to find the readings of the two ideal meters.

Be sure to redraw the circuit as needed and to clearly show and circle your intermediate results.

3. (22 pts) a) Find and draw the Thévenin equival ent of the circuit shown. The load resistor is R_{L}.

b) Find the load current using your Thévenin equivalent circuit.
c) Find and draw the Norton equivalent of the same circuit.
d) Find the load voltage using your Norton equivalent circuit.

ECE 2210/00 Exam 1 Spring 10 p2

4. (19 pts) Use nodal analysis to find the voltage across $\mathrm{R}_{4}\left(\mathrm{~V}_{\mathrm{R} 4}\right)$ and the current through $\mathrm{R}_{1}\left(\mathrm{I}_{\mathrm{R} 1}\right)$. .
You MUST show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.

5. (16 pts) For the waveform shown, find: INCLUDE UNITS IN YOUR ANSWERS
a) peak-to-peak current, I_{pp}
b) amplitude, A
c) period, T
d) frequency f in cycles/sec or Hz
e) frequency ω in radians $/ \mathrm{sec}$
f) the phase angle in degrees
g) a complete expression for $i(t)$, include numbers and units

Answers

1. a) $600 \cdot \Omega$
b) $9 \cdot \mathrm{~V}$
c) $149 \cdot \mathrm{~mW}$
2. $0.5 \cdot \mathrm{~mA} \quad 12.8 \cdot \mathrm{~V}$

b) $300 \cdot \mathrm{~mA}$
c)
$450 \cdot \mathrm{~mA}$

d) $3 \cdot \mathrm{~V}$

a) $4 \cdot \mathrm{~V}$
b) $40 \cdot \mathrm{~mA}$
5 a) $6 \cdot \mathrm{~mA}$
b) $3 \cdot \mathrm{~mA}$
c) $40 \cdot \mu \mathrm{~s}$
d) $25 \cdot \mathrm{kHz}$
e) $1.57 \cdot 10^{5} \cdot \frac{\mathrm{rad}}{\mathrm{sec}}$
f) 90°
g) $3 \cdot \mathrm{~mA} \cdot \cos \left(1.57 \cdot 10^{5} \cdot \frac{\mathrm{rad}}{\mathrm{sec}} \cdot \mathrm{t}+90 \cdot \mathrm{deg}\right)+1 \cdot \mathrm{~mA}$

ECE 2210/00 Midterm \#1 Arn Stolp

Name
Scores:
Pages 1\&2 \qquad of a possible 43 pts

Pages 3\&4 \qquad of a possible 41 pts

Page 5 \qquad of a possible 16 pts

Total \qquad of a possible 100 pts

