1. (24 pts) The ammeter, A, reads 20 mA. Remember that ideal ammeters have no resistance.
 a) The power dissipated by R_2 is 0.18 W, what is the value of R_2?

 \[P = 0.18 \text{ W} \]

 \[R_1 = ? \]

 \[R_2 = ? \]

 b) The source provides 0.6 W of power. What is the value of V_S?

 c) What is the value of R_1?

2. (24 pts) Use the method of superposition to find the voltage across R_3 (V_{R3}) and the current through R_2 (I_{R2}). Be sure to clearly show and circle your intermediate results.

 \[I_S = 12 \text{ mA} \]

 \[V_S = 9 \text{ V} \]

 \[R_1 = 150 \Omega \]

 \[R_2 = 1.2 \text{ k}\Omega \]

 \[R_3 = 600 \Omega \]

 \[R_4 = 200 \Omega \]
3. (26 pts) a) Find and draw the Thévenin equivalent of the circuit shown. The load resistor is R_L.

![Circuit Diagram](image)

b) Find and draw the Norton equivalent of the same circuit.

c) Find the Voltage across the load using your Thévenin equivalent circuit. $V_{RL} = ?$

d) Select a load resistor to maximize the power delivered to the load and find that maximum power. $P_{RL_{max}} = ?$

4. (26 pts) a) Use nodal analysis to find the voltage across $R_2 (V_{R2})$.

You MUST show all the steps of nodal analysis work to get credit, including drawing appropriate symbols and labels on the circuit shown.

![Circuit Diagram](image)

Answers

1. a) 50 Ω
 b) 10 V
 c) 86.7 Ω

3. a) 7.2 V
 b) 28.8 mA
 c) 86.7 Ω

2. a) 1 mA
 b) 7.8 V
 c) 1.2 V
 d) 51.8 mW

4. a) 4 V
 b) 10 mA

Folder Number ________