1. (13 pts) The following circuit has been connected as shown for a long time.

Find the energy stored in the capacitor and the inductor.

Also show the values of the voltage(s) and current(s) necessary to answer this question.

2. (9 pts) Find the resonant frequency (or frequencies) of the circuit shown (in cycles/sec or Hz).

2. (19 pts) The current through a 0.3mH inductor is shown below. Make an accurate drawing of the inductor voltage. Make reasonable assumptions where necessary. Label your graph.

Note: You will be graded on the accuracy of your plot at 0, 2, 4, 8, and 10μs, so calculate those values and plot or label them carefully. Between those points your plot must simply be the correct shape.

3. (21 pts) The switch has been open for a long time and is closed (as shown) at time $t = 0$.

 a) Find the complete expression for $v_C(t)$.

 b) What is v_C when $t = 2\tau$?

 c) At time $t = 2\tau$ the switch is opened again. Find the complete expression for $v_C(t')$, where t' starts at $t = 2\tau$.

 Be sure to clearly show the time constant.
5. (15 pts) Z_{eq} is the total impedance between the two terminals.
Find Z_{eq} in polar form (give me numbers).
For partial credit, you must show work and/or intermediate results.

$$f := 500 \text{ Hz}$$

$$Z_{eq} = \frac{\text{_______}}{\text{_______}^\circ}$$

6. (17 pts) For partial credit, you must show work and/or intermediate results.

a) Find Z_1

b) Find V_S

c) Circle 1:

i) I_S leads V_2

ii) I_S lags V_2

Why? Show numbers:

_____ > _____

_____ < _____

Or explain by other means:

7. (6 pts) $Z := |Z|e^{30\deg}$ We don’t know its magnitude, but its phase angle is $+30^\circ$.

Z is made of a 100Ω resistor in series with one other part. What is the part? type and value?

$$\omega := \frac{32000 \text{ rad}}{\text{sec}}$$

Answers

1. 2·A 10-mJ 30-V 4.5-mJ 2. 1678-Hz

3.

\[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
\text{time (ms)} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
\text{volts} & 90 & 30 & 0 & -30 & -90 & -90 & -90 & -90 & -90 & -90 & -90 \\
\end{array} \]

4. a) $9.6 \cdot V + 14.4 \cdot V \cdot e^{\frac{t}{96 \text{ms}}}$

b) 11.55-V

c) $24 \cdot V - 12.45 \cdot V \cdot e^{\frac{t}{240 \text{ms}}}$

5. $Z_{eq} = 56.1 \Omega / -19.3^\circ$

6. a) $Z_2 = 187.5 \Omega / 68.682^\circ$

b) $V_S = 1.62\text{V} / 8.93^\circ$

c) i) I_S leads V_2 +38.6$^\circ$ < -30$^\circ$

I_S has positive phase angle, V_2 has negative phase angle

7. 1.8-mH inductor