1. (13 pts) The following circuit has been connected as shown for a long time.

Find the energy stored in the capacitor and the inductor.

Also show the values of the voltage(s) and current(s) necessary to answer this question.

2. (9 pts) Find the resonant frequency (or frequencies) of the circuit shown (in cycles/sec or Hz).

2. (19 pts) The current through a 0.3 mH inductor is shown below. Make an accurate drawing of the inductor voltage. Make reasonable assumptions where necessary. Label your graph.

Note: You will be graded on the accuracy of your plot at $0,2,4,8$, and $10 \mu \mathrm{~s}$, so calculate those values and plot or label them carefully. Between those points your plot must simply be the correct shape.
$\mathrm{L}:=0.3 \cdot \mathrm{mH}$

3. (21 pts) The switch has been open for a long time and is closed (as shown) at time $\mathrm{t}=0$.
a) Find the complete expression for $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$.
b) What is v_{C} when $t=2 \tau$?
c) At time $t=2 \tau$ the switch is opened again. Find the complete expression for $\mathrm{v}_{\mathrm{C}}\left(\mathrm{t}^{\prime}\right)$, where t^{\prime} starts at $\mathrm{t}=2 \tau$.

Be sure to clearly show the time constant.

ECE 2210/00 Exam 2 Fall 06 p2

5. (15 pts$) \mathbf{Z}_{\mathrm{eq}}$ is the total impedance between the two terminals.

Find \mathbf{Z}_{eq} in polar form (give me numbers).
For partial credit, you must show work and/or intermediate results.
$\mathrm{f}:=500 \cdot \mathrm{~Hz}$

$$
\mathrm{Z}_{\mathrm{eq}}=
$$

\qquad
\qquad ${ }^{\circ}$

6. (17 pts) For partial credit, you must show work and/or intermediate results.
a) Find $\mathbf{Z}_{\mathbf{2}}$
b) Find $\mathbf{V}_{\mathbf{S}}$

c) Circle 1:
i) $\mathbf{I}_{\mathbf{S}}$ leads $\mathbf{V}_{\mathbf{2}}$
ii) $\mathbf{I}_{\mathbf{S}}$ lags $\mathbf{V}_{\mathbf{2}}$

Why? Show numbers: \qquad > \qquad
\qquad < \qquad
Or explain by other means:
7. (6 pts) $\quad \mathbf{Z}:=|\mathbf{Z}| \cdot \mathrm{e}^{\mathrm{j} \cdot 30 \mathrm{deg}} \quad$ We don' t know its magnitude, but its phase angle $\mathrm{i}+30^{\circ}$.
\mathbf{Z} is made of a 100Ω resistor in series with one other part. What is the part? type and value?

$$
\omega:=32000 \cdot \frac{\mathrm{rad}}{\mathrm{sec}}
$$

$$
\begin{aligned}
& \text { value? } \\
& \mathbf{Z}=
\end{aligned}
$$

Answers

$\begin{array}{lllll}\text { 1. } 2 \cdot \mathrm{~A} \quad 10 \cdot \mathrm{~mJ} & 30 \cdot \mathrm{~V} & 4.5 \cdot \mathrm{~mJ} & \text { 2. } 1678 \cdot \mathrm{~Hz}\end{array}$
3.

4. a) $9.6 \cdot \mathrm{~V}+14.4 \cdot \mathrm{~V} \cdot \mathrm{e}^{\frac{\mathrm{t}}{96 \mathrm{~ms}}}$

b) $11.55 \cdot \mathrm{~V}$
c) $24 \cdot \mathrm{~V}-12.45 \cdot \mathrm{~V} \cdot \mathrm{e}^{\frac{\mathrm{t}^{\prime}}{240 \mathrm{~ms}}}$
5. $\mathbf{Z}_{\text {eq }}=56.1 \Omega /-19.3^{\circ}$

ECE 2210/00 Exam 2
Name
Scores:
Page 1\&2 \qquad of a possible 41 pts

Page 3\&4 \qquad of a possible 36 pts

Page 5\&6 \qquad of a possible 23 pts
7. $1.8 \cdot \mathrm{mH}$ inductor
\qquad of a possible 100 pts

