ECE 2210/00 Exam 2 given: Fall 07
 (The space between problems has been removed.)

1. (6 pts) Add another inductor to the one shown to make an equivalent inductance of 8 mH . You may add it in series or in parallel, but make sure that it is clear to me what your connection is.
$\mathrm{L}_{\mathrm{eq}}:=8 \cdot \mathrm{mH}$

2. (10 pts) Find the resonant frequency (or frequencies) of the circuit shown (in cycles/sec or Hz).

3. (16 pts) The voltage across a 0.06 H inductor is shown. Make an accurate drawing of the inductor current. Make reasonable assumptions where necessary. Label your graph.

Note: You will be graded on the accuracy of your plot at $0,3,6$, and 8 ms , so calculate those values and plot or label them carefully. Between those points your plot must simply be the correct shape.
L: $=0.06 \cdot \mathrm{H}$
$\mathrm{L}:=0.06 \cdot \mathrm{H} \quad \mathrm{i}_{\mathrm{L}}(0)=0$

4. (20 pts) The switch has been closed for a long time and is opened (as shown) at time $\mathrm{t}=0$.
a) Find the complete expression for $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$.
$\mathrm{I}_{\mathrm{S}}:=30 \cdot \mathrm{~mA}$

b) If the switch were closed again, would the time constant be different? If yes, find the new time constant.

ECE 2210/00 Exam 2 Fall 07 p1

5. (18 pts) Find \mathbf{Z}_{eq} in simple polar form (give me numbers).

For partial credit, you must show work and/or intermediate results.
$\mathrm{f}=79.577 \cdot \mathrm{~Hz}$
$\mathrm{Z}_{\mathrm{eq}}=$ \qquad
\qquad Polar Form

6. (20 pts) For partial credit, you must show work and/or intermediate results.
a) Find \mathbf{I}_{1}
b) Circle 1:
i) $\mathbf{V}_{\text {in }}$ leads $\mathbf{I}_{\mathbf{2}}$
ii) $\mathbf{V}_{\text {in }}$ lags $\mathbf{I}_{\mathbf{2}}$
\qquad > \qquad
\qquad $<$ \qquad

Why? Show numbers, or explain by other means.
c) Find $\mathbf{Z}_{\mathbf{2}}$ in polar form
7. (10 pts) The two phasors shown represent two currents, i_{1} and i_{2}.
a) Draw the phasor representation for $i_{3}=i_{2}-i_{1}$
b) Find the magnitude of i_{3}.
c) Find the phase angle of i_{3} (in degrees).

Answers

4. a) $9 \cdot V-5.4 \cdot V \cdot e^{\frac{-t}{1.2 \cdot \mathrm{~ms}}}$
b) $66 \cdot \mathrm{~ms}$
5. $66.9 \Omega /-13.8^{\circ}$
6. a) $\mathbf{I}_{\mathbf{1}}=80 \mathrm{~mA} / 30^{\circ}$
b) i) $\mathbf{V}_{\text {in }}$ leads $\mathbf{I}_{\mathbf{2}} \quad 30^{\circ}<20^{\circ}$
c) $\mathbf{Z}_{2}=883 / 38.15^{\circ} \Omega$

