ECE2210 Exam 2 given: Fall 09

(The space between problems has been removed.)

1. (16 pts) The following circuit has been connected as shown for a long time.

Find the energy stored in the capacitor and the inductor.
Also show the values of the voltages) and currents) necessary to answer this question.

2. (24 pts) The switch has been open (not making contact) for a long time and is switched closed (as shown) at time $t=0$.
a) Find the complete expression for $i_{L}(t)$.
b) Find i_{L} at time $\mathrm{t}=1.2 \tau . \quad \mathrm{i}_{\mathrm{L}}(1.2 \cdot \tau)=$?
c) At time $t=1.2 \tau$ the switch is opened again.

Will the time constant be different now?
If yes, find the new time constant.

3. (18 pts) Find $\mathbf{Z}_{\mathbf{e q}}$ in simple polar form (give me numbers).

You must show work and intermediate results. $\quad \mathrm{f}:=3.1831 \cdot \mathrm{kHz}$
$\mathrm{Z}_{\text {eq }}=$ \qquad 1 \qquad ${ }^{\circ}$

Polar Form

ECE2210 Exam 2 Fall 09 p2

4. (22 pts)
$\mathbf{I}_{\mathbf{Z 1}}=63.383+46.988 \mathrm{j} \cdot \mathrm{mA}=78.9 \cdot \mathrm{~mA} \quad / 36.55^{\circ}$
$\mathbf{I}_{\mathbf{Z} \mathbf{2}}=18.794+6.84 \mathrm{j} \cdot \mathrm{mA}$
a) Find \mathbf{Z}_{2}
b) Find \mathbf{Z}_{1} in polar form.

c) Circle the best, most comprehensive answer:
i) \mathbf{Z}_{1} must contain a capacitor \quad ii) \mathbf{Z}_{1} must contain a resistor and a capacitor
iii) \mathbf{Z}_{1} must contain an inductor
iv) \mathbf{Z}_{1} must contain a resistor and an inductor
5. (20 pts) The voltage across a $15 \mu \mathrm{~F}$ capacitor is shown below. Make an accurate drawing of the capacitor current. Make reasonable assumptions where necessary. Label your graph.
Note: You will be graded on the accuracy of your plot at $0,2,4,7$ and 8 ms , so calculate those values and plot or label them carefully. Between those points your plot must simply be the correct shape.
You MUST SHOW how you calculate your values.
$\mathrm{C}:=15 \cdot \mu \mathrm{~F}$

Answers

1. $6.67 \cdot \mathrm{~A} \quad 1.78 \cdot \mathrm{~J} \quad 20 \cdot \mathrm{~V} \quad 18 \cdot \mathrm{~mJ}$
2. a) $120 \cdot \mathrm{~mA}-80 \cdot \mathrm{~mA} \cdot \mathrm{e}^{\frac{-\mathrm{l}}{170 \cdot \mu \mathrm{~s}}}$
b) $95.9 \cdot \mathrm{~mA}$
c) $90 \cdot \mu \mathrm{~s}$
3. $78 \Omega / 22.6^{\circ}$
4. a) $300 \Omega / 22^{\circ}$
b) $86.7 \Omega /-72.5^{\circ}$
c) ii)
5. Ramps from +150 mA down to -150 mA at 4 ms , jumps up to +50 mA and stays there until $7 \mathrm{~ms}, 0$ after that.
