ECE 2210/00 Exam 2 given: Fall 14

1. (9 pts) The following circuit has been connected as shown for a long time. Find the energy stored in the capacitor and the inductor (2 answers). Also show the values of the voltage(s) and current(s) necessary to answer this question.

2. (32 pts) The switch has been open for a long time and is closed (as shown) at time $t=0$.
a) Find the complete expression for $i_{L}(t)$.

b) Find i_{L} at time $\mathrm{t}=1.2 \tau . \quad \mathrm{i}_{\mathrm{L}}(1.2 \cdot \tau)=$?
c) At time $t=1.2 \tau$ the switch is opened again. Find the complete expression for $i_{L}\left(\mathrm{t}^{\prime}\right)$, where t^{\prime} starts at $\mathrm{t}=1.2 \tau$. Be sure to clearly show the time constant.
3. (18 pts) Find $\mathbf{Z}_{\mathbf{e}}$ in simple polar form (give me numbers).

For partial credit, you must show work and/or intermediate results.
$\mathrm{f}:=5 \cdot \mathrm{kHz}$

ECE 2210/00 Exam 2 Fall 14 p2

4. (23 pts) a) Find $\mathbf{Z}_{\mathbf{1}}$. For partial credit you must show work and/or intermediate results.

b) To make \mathbf{Z}_{1} in the simplest way, what part(s) would you need? Just circle the needed part(s), don't find the values. resistor capacitor inductor power supply current source Thevenin resistor Ideal transformer voltmeter ammeter scope
c) Circle 1: i) \mathbf{I}_{2} leads the source voltage $\left(\mathbf{V}_{\text {in }}\right) \quad$ ii) \mathbf{I}_{2} lags the source voltage $\left(\mathbf{V}_{\text {in }}\right)$
5. (18 pts) The voltage across a $4 \mu \mathrm{~F}$ capacitor is shown below. Make an accurate drawing of the capacitor current. Make reasonable assumptions where necessary. Label your graph.
Note: You will be graded on the accuracy of your plot at $0,3,6,9$ and 10 ms , so calculate those values and plot or label them carefully. Between those points your plot must simply be the correct shape.
You MUST SHOW how you calculate your values starting from the original relationships between voltage and current.
That is: Start with the interger and/or differential equations for the capacitor!

$$
\mathrm{C}:=4 \cdot \mu \mathrm{~F}
$$

Answers

1. $128 \cdot \mathrm{~mJ} \quad 16 \cdot \mathrm{~mJ}$

> 2. a) $300 \cdot \mathrm{~mA} \cdot \mathrm{e}^{\frac{-\mathrm{t}}{90 \cdot \mu \mathrm{LS}}}$
> $\begin{array}{ll}\text { c) } 300 \cdot \mathrm{~mA}-209.6 \cdot \mathrm{~mA} \cdot \mathrm{e}^{\frac{-t^{\prime}}{42 \cdot \mu \mathrm{~S}}} & \text { b0.4 } \mathrm{mA}\end{array}$
3. $1902 \Omega /-22.6^{\circ}$
4. a) $191.4 / 43.05^{\circ} \Omega$
b) resistor inductor
c) i)
5.

