ECE1050/60 Exam 2 given: Spring 04 (The space between problems has been removed.)

1. (13 pts) The current through and the voltage across an unknown component are shown below.
a) What type of component is it?

Give a good reason for your choice.
b) What is the value of the component?

2. (27 pts) a) The switch has been closed for a long time and is opened (as shown) at time $t=0$. Find the initial and final conditions and write the full expression for $v_{C}(t)$, including all the constants that you find.
b) What is v_{C} at 1.1 ms ?

c) At time $t=1.1 \mathrm{~ms}$ the switch is closed again. Find the complete expression for $\mathrm{v}_{\mathrm{C}}\left(\mathrm{t}^{\prime}\right)$, where t^{\prime} starts when the switch closes. Be sure to clearly show the time constant.
3. (22 pts) $Z_{\text {eq }}$ is the total impedance between the two terminals
a) Find an expressioin for $Z_{e q}$ without any numbers, just in terms of $j, \omega, L, C, \&$ the Rs.
b) Find $Z_{\text {eq }}$ in numeric form (polar or rectangular). For partial credit, you must show work and/or intermediate results.

c) If you applied a sinusoidal voltage to this impedance:
i) The current would lead the voltage
(Circle 1) ii) The voltage would lead the current

ECE1050/60 Exam 2 Spring 04 p2

4. (21 pts) a) Find Z_{1}. For partial credit, you must show work and/or intermediate results.

b) To make Z_{1} in the simplest way, what part(s) would you need? Just circle the needed part(s), don' t find the values.

resistor	capacitor	inductor	power supply	current source
Thevenin resistor	Ideal transformer	voltmeter	ammeter	scope

5. (17 pts) Two voltage waveforms are shown below, $\mathrm{v}_{1}(\mathrm{t})$ and $\mathrm{v}_{2}(\mathrm{t})$. Find the sum of the $\mathrm{two}\left(\mathrm{v}_{3}(\mathrm{t})=\mathrm{v}_{1}(\mathrm{t})+\mathrm{v}_{2}(\mathrm{t})\right)$, and express it as a cosine wave with the correct amplitude and phase angle. You do not need to determine ω, just use the symbol ω.

Answers

1.a) inductor: $v(t):=L \frac{d}{d t} i(t) \quad$ This fits the graphs, $v(t)$ corresponds to slope of $i(t)$ Besides, capacitor voltage can' t change instantly.
b) $8 \cdot \mathrm{mH}$
2.a) $18 \cdot \mathrm{~V}-13.5 \cdot \mathrm{~V} \cdot \mathrm{e}^{\frac{\mathrm{t}}{0.9 \mathrm{~ms}}}$
b) $14 \cdot \mathrm{~V}$
c) $4.5 \cdot \mathrm{~V}+9.5 \cdot \mathrm{~V} \cdot \mathrm{e}^{\frac{\mathrm{t}}{0.45 \cdot \mathrm{~ms}}}$
3.a) $\quad Z_{\text {eq }}:=\frac{1}{\frac{1}{R+j \cdot \omega \cdot L}+\mathrm{j} \cdot \omega \cdot \mathrm{C}}$
b) $(12.5-11.4 \cdot \mathrm{j}) \cdot \Omega$
c) i

ECE 1050/60 Exam 2
4. $1905 \Omega /-43^{\circ}$
5. a) $10 \cdot \mathrm{~V} \cdot \cos (\omega \cdot \mathrm{t}+36.9 \cdot \mathrm{deg})$
b) Z_{1} has a negative phase angle of less than 90°,
so you need: resistor \& capacitor
Name____ of a possible 40 pts
Scores:
Page $1 \& 2 \ldots$
Page $3 \& 4 \ldots$
Page $5 \ldots$

ECE1050/60 Exam 2 Spring 04 p2

