ECE1050/60 Exam 2 given: Spring 04

- 1. (13 pts) The current through and the voltage across
- (The space between problems has been removed.) i(t)

2. (27 pts) a) The switch has been closed for a long time and is opened (as shown) at time t = 0. Find the initial and final conditions and write the full expression for $v_{\rm C}(t)$, including all the constants that you find.

b) What is v_C at 1.1ms?

c) At time t = 1.1ms the switch is closed again. Find the complete expression for $v_{\rm C}(t')$, where t' starts when the switch closes. Be sure to clearly show the time constant.

- 3. (22 pts) Z_{eq} is the total impedance between the two terminals a) Find an expressioin for Z_{eq} without any numbers, just in terms of j, w, L, C, & the Rs.
 - b) Find Z_{eq} in numeric form (polar or rectangular). For partial credit, you must show work and/or intermediate results.

- c) If you applied a sinusoidal voltage to this impedance:
 - (Circle 1)
- i) The current would lead the voltage
- ii) The voltage would lead the current

ECE1050/60 Exam 2 Spring 04 p2

4. (21 pts) a) Find Z₁. For partial credit, you must show work and/or intermediate results.

b) To make Z₁ in the simplest way, what part(s) would you need? Just circle the needed part(s), don' t find the values. inductor resistor canacitor nower supply current source

10313101	capacitor	maactor	power supp	''y C	
Thevenin resistor	Ideal transfor	rmer voltm	eter	ammeter	scope

5. (17 pts) Two voltage waveforms are shown below, $v_1(t)$ and $v_2(t)$. Find the sum of the two ($v_3(t) = v_1(t) + v_2(t)$), and express it as a cosine wave with the correct amplitude and phase angle. You do not need to determine ω , just use the symbol ω .

Answers

2.a)

3.a)

1.a) inductor: $v(t) := L \frac{d}{dt}i(t)$ This fits the graphs, v(t) corresponds to slope of i(t) Besides, capacitor voltage can' t change instantly. b) 8·mH t 45.ms

b)
$$14 \cdot V$$
 c) $4.5 \cdot V + 9.5 \cdot V \cdot e^{-0.4}$

ECE 1050/60 Exam 2

Name	
Scores:	
Page 1&2	of a possible 40 pts
Page 3&4	of a possible 43 pts
Page 5	of a possible 17 pts
Total	_ of a possible 100 pts

- 4. 1905Ω /-43°
- 5. a) $10 \cdot V \cdot \cos(\omega \cdot t + 36.9 \cdot \deg)$

 $18 \cdot V - 13.5 \cdot V \cdot e^{-\frac{U}{0.9 \cdot ms}}$

b) Z_1 has a negative phase angle of less than 90°, so you need: resistor & capacitor

ECE1050/60 Exam 2 Spring 04 p2