ECE1050/60 Exam 2 given: Spring 05

(The space between problems has been removed.)

1. (6 pts) Add another capacitor to the one at left to make an equivalent capacitance of $4 \mu \mathrm{~F}$. You may add it in series or in parallel, but make sure that it is clear to me what your connection is.

$$
\mathrm{C}_{\mathrm{eq}}:=4 \cdot \mu \mathrm{~F}
$$

2. (10 pts) Find the resonant frequency (or frequencies) of the circuit (in cycles/sec or Hz).

3. (19 pts) The current through a $0.3 \mu \mathrm{~F}$ capacitor is shown below. Make an accurate drawing of the capacitor voltage. Label the y-axis of your graph (l've already done the x-axis). The initial voltage is 1 V .

Note: You will be graded on the accuracy of your plot at $0,2,6$, and 8 ms , so calculate those values and plot or label them carefully. Between those points your plot must simply be the correct shape.

$$
\mathrm{C}:=0.3 \cdot \mu \mathrm{~F} \quad \mathrm{~V}(0)=1 \cdot \mathrm{~V}
$$

4. (24 pts) The switch has been closed (making contact) for a long time and is switched open (as shown) at time $t=0$.
a) Find the complete expression for $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$.
b) What is $i_{L}(0.5 \mathrm{~ms})=$?
$\mathrm{V}_{\mathrm{S}}:=40 \cdot \mathrm{~V}$

c) At time $t=0.5 \mathrm{~ms}$ the switch is closed again. Find the complete expression for $i_{L}\left(t^{\prime}\right)$, where t^{\prime} starts at $t=0.5 \mathrm{~ms}$. Be sure to clearly show the time constant.

ECE1050/60 Exam 2 Spring 05 p2

5. (9 pts) Subtract the sinusoidal voltages.

$$
\begin{aligned}
& \mathrm{v}_{1}(\mathrm{t})=12 \cdot \mathrm{~V} \cdot \cos (377 \cdot \mathrm{t}+30) \\
& \mathrm{v}_{2}(\mathrm{t})=8 \cdot \mathrm{~V} \cdot \cos (377 \cdot \mathrm{t}-45) \\
& \mathrm{v}_{1}(\mathrm{t})-\mathrm{v}_{2}(\mathrm{t})=? \quad \text { Give your answer in time domain form. }
\end{aligned}
$$

6. (20 pts) Note: each part of this problem can be worked out separately.
a) Find Z_{1}. For partial credit, you must show work and/or intermediate results.
b) Find the voltage across $R_{1}, V_{R 1}$.

c) $Z_{2}=120 /-30^{\circ} \Omega$, To make Z_{2} in the simplest way, what part(s) would you need? Just circle the needed part(s), don' t find the values.

| resistor | capacitor | inductor | power supply | current source |
| :--- | :---: | :---: | :---: | ---: | ---: |
| Thevenin resistor | Ideal transformer | voltmeter | ammeter | scope |

d) Circle 1:
i) I_{1} leads I_{2}
ii) I_{1} lags I_{2}
7. (12 pts) $Z_{e q}$ is the total impedance between the two terminals.

Find $Z_{\text {eq }}$ in simple polar form (give me numbers).
For partial credit, you must show work and/or intermediate results.
$\mathrm{f}:=8000 \cdot \mathrm{~Hz}$

$$
\mathrm{Z}_{\mathrm{eq}}=
$$

\qquad 1 \qquad ${ }^{\circ}$
Polar Form

Answers

1. $\mathrm{C}_{2}=6 \cdot \mu \mathrm{~F}$ in series
2. $\mathrm{f}_{\mathrm{o}}=11.3 \cdot \mathrm{kHz}$
3.

4. a) $\mathrm{i}_{\mathrm{L}}(\mathrm{t})=200 \cdot \mathrm{~mA}+600 \cdot \mathrm{~mA} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{0.2 \cdot \mathrm{~ms}}}$
b) $\mathrm{i}_{\mathrm{L}}(0.5 \cdot \mathrm{~ms})=250 \cdot \mathrm{~mA}$
c) $\mathrm{i}_{\mathrm{L}}\left(\mathrm{t}^{\prime}\right)=800 \cdot \mathrm{~mA}-550 \cdot \mathrm{~mA} \cdot \mathrm{e}^{-\frac{\mathrm{t}^{\prime}}{0.8 \cdot \mathrm{~ms}}}$
5. $\mathrm{v}_{1}(\mathrm{t})-\mathrm{v}_{2}(\mathrm{t})=12.6 \cdot \cos (377 \cdot \mathrm{t}+67.9 \cdot \mathrm{deg}) \cdot \mathrm{V}$

ECE 1050/60 Exam 2
Name
Scores:
Page 1\&2 \qquad of a possible 35 pts
6. a) $\mathrm{Z}_{1}=480 / 28^{\circ} \Omega$
c) resistor \& capacitor
b) $\mathrm{V}_{\mathrm{R} 1}:=4.52 \cdot \mathrm{~V}+0.911 \cdot \mathrm{j} \cdot \mathrm{V}$
$=4.61 / 11.4^{\circ} \mathrm{V}$
d) ii, $-36^{\circ}<22^{\circ}$
7. $\mathrm{Z}_{\mathrm{eq}}=382.1 \Omega{\underline{/-40.2^{\circ}}}^{\circ}$

