ECE 2210/00 Exam 2 given: Spring 09
 (The space between problems has been removed.)

1. (11 pts) Find the resonant frequency (or frequencies) of the circuit shown (in cycles/sec or Hz).
2. (29 pts) The switch has been closed for a long time and is opened (as shown) at time $t=0$.
a) Find the complete expression for $i_{L}(t)$.

b) At time $t=1.5 \tau$ the switch is closed again. Will the time constant be different now? If yes, find the new time constant.

3. (19 pts) Find \mathbf{Z}_{eq} in simple polar form (give me numbers). You must show work and intermediate results.
$\mathrm{f}:=1000 \cdot \mathrm{~Hz}$
$\mathrm{L}:=0.6 \cdot \mathrm{mH}$

4. (23 pts)
a) Find \mathbf{I}_{1}
b) Find $\mathbf{V}_{\text {in }}$ in polar form.
c) Find $\mathbf{Z}_{\mathbf{2}}$

ECE 2210/00 Exam 2 Spring 09 p2

5. (18 pts) The voltage across a $6 \mu \mathrm{~F}$ capacitor is shown below. Make an accurate drawing of the capacitor current. Make reasonable assumptions where necessary. Label your graph.

Note: You will be graded on the accuracy of your plot at $0,5,7$ and 8 ms , so calculate those values and plot or label them carefully. Between those points your plot must simply be the correct shape.

You MUST SHOW how you calculate your values.

$$
C:=6 \cdot \mu \mathrm{~F}
$$

Answers

1. $291 \cdot \mathrm{~Hz}$
2. a) $50 \cdot \mathrm{~mA}+150 \cdot \mathrm{~mA} \cdot \mathrm{e}^{\frac{-\mathrm{t}}{37.5 \cdot \mu \mathrm{~s}}}$
b) $75 \cdot \mu \mathrm{~s}$
3. $18.0 \Omega /-27.2^{\circ}$
4. a) $\mathbf{I}_{1}=34.18 \mathrm{~mA} /-17.01^{\circ}$
b) $\mathbf{V}_{\text {in }}=6.84 \mathrm{~V} /-17.01^{\circ}$
5. $0-5 \mathrm{~ms}$: ramps from 0 to -24 mA
$5 \mathrm{~ms}-7 \mathrm{~ms}$: flat at +30 mA

