ECE 2210/00 Exam 2 given: Spring 11 (The space between problems has been removed.)

1. (35 pts) The switch has been open for a long time and is closed (as shown) at time $\mathrm{t}=0$.
a) Find the complete expression for $i_{L}(t)$.
b) Find i_{L} at time $\mathrm{t}=1.2 \tau . \quad \mathrm{i}_{\mathrm{L}}(1.2 \cdot \tau)=$?
c) At time $t=1.2 \tau$ the switch is opened again.

Find the complete expression for $\mathrm{i}_{\mathrm{L}}\left(\mathrm{t}^{\prime}\right)$, where t ' starts at $\mathrm{t}=1.2 \tau$.
Be sure to clearly show the time constant.

2. (25 pts) For partial credit, you must show work and/or intermediate results.
a) Find $\mathbf{V}_{\mathbf{S}}$ in polar form.
b) Find $\mathbf{I}_{\mathbf{T}}$
c) Find $\mathbf{Z}_{\mathbf{1}}$

d) Circle 1: $\begin{array}{lll}\text { i) } \mathbf{I}_{1} \text { lags } \mathbf{I}_{2} & \text { ii) } \mathbf{I}_{1} \text { leads } \mathbf{I}_{\mathbf{2}}\end{array}$
e) By how much? I.E. what is the phase angle between $\mathbf{I}_{\mathbf{1}}$ and $\mathbf{I}_{\mathbf{2}}$?

$$
\mathrm{L}:=10 \cdot \mathrm{mH}
$$

3. (21 pts) Find \mathbf{Z}_{eq} in simple polar form (give me numbers \& units).

$$
\mathrm{f}:=318.31 \cdot \mathrm{~Hz}
$$

ECE 2210/00 Exam 2 Spring 11 p2

4. 19 pts) The voltage across a capacitor is shown below. Make an accurate drawing of the capacitor current. Make reasonable assumptions where necessary. Label your graph.
Note: You will be graded on the accuracy of your plot at $0,0.05,0.06$ and 0.08 sec, so calculate those values and plot or label them carefully. Between those points your plot must simply be the correct shape.

You MUST SHOW how you calculate your values starting from the original relationships between voltage and current. That is: Start with the interger and/or differential equations for the capacitor!

Answers

1. a) $300 \cdot \mathrm{~mA} \cdot \mathrm{e}^{\frac{-\mathrm{t}}{45 \cdot \mu \mathrm{~s}}}$
b) $90.4 \cdot \mathrm{~mA}$
c) $300 \cdot \mathrm{~mA}-209.6 \cdot \mathrm{~mA} \cdot \mathrm{e}^{\frac{-\mathrm{t}^{\prime}}{30 \cdot \mu \mathrm{~s}}}$
2. a) $\mathbf{V}_{\mathbf{S}}=5.122 \mathrm{~V}$
131.34°
b) $\mathbf{I}_{\mathbf{T}}=75.52 \mathrm{~mA} \underline{/-26.5^{\circ}}$
c) $\mathbf{Z}_{\mathbf{1}}=142 \Omega{\underline{/ 65.0^{\circ}}}^{\circ}$
d) i) e) $13.7 \cdot \mathrm{deg}$
3. $42.2 \Omega /-32^{\circ}$

ECE 2210 Exam 2 Arn Stolp

Name Scores:
Prob 1 \qquad of a possible 35 pts

Prob 1 \qquad of a possible 25 pts

Prob 1 \qquad of a possible 21 pts

Prob 1 \qquad of a possible 19 pts Total \qquad of a possible 100 pts

