\qquad
\qquad

ECE 2210 / 00 Spring 2020 Exam 2

Useful Information

$C=\frac{\mathrm{Q}}{\mathrm{V}}$
${ }^{\mathrm{v}} \mathrm{C}=\frac{1}{\mathrm{C}} \cdot \int_{-\infty}^{\mathrm{t}}{ }^{\mathrm{i}} \mathrm{C}^{\mathrm{dt}}=\frac{1}{\mathrm{C}} \cdot \int_{0}^{\mathrm{t}}{ }^{\mathrm{i}} \mathrm{C}^{\mathrm{dt}}+\mathrm{v}_{\mathrm{C}}{ }^{(0)}$ initial voltage
farad $=\frac{\text { coul }}{\text { volt }}=\frac{\mathrm{amp} \cdot \mathrm{sec}}{\text { volt }} \quad \mathrm{i}_{\mathrm{C}}=\mathrm{C} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v}_{\mathrm{C}}$
series: $\quad C_{e q}=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots}$
$\mathrm{W}_{\mathrm{C}}=\frac{1}{2} \cdot \mathrm{C} \cdot \mathrm{V}_{\mathrm{C}}{ }^{2} \quad$ Capacitor voltage cannot change instantaneously
henry $=\frac{\text { volt } \cdot \text { sec }}{\text { amp }} \quad{ }^{\mathrm{i}} \mathrm{L}_{\mathrm{L}}=\frac{1}{\mathrm{~L}} \cdot \int_{-\infty}^{\mathrm{t}} \quad \mathrm{v}_{\mathrm{L}} \mathrm{dt} \quad=\quad \frac{1}{\mathrm{~L}} \cdot \int_{0}^{\mathrm{t}} \int_{\mathrm{v}_{\mathrm{L}} \mathrm{dt}+\mathrm{i}_{\mathrm{L}}(0)}^{\text {initial current }} \quad \Delta \mathrm{I}_{\mathrm{L}}=\frac{1}{\mathrm{~L}} \cdot \int_{\mathrm{t}_{1}}^{\mathrm{t}}{ }^{2}{ }^{\mathrm{v}} \mathrm{L}_{\mathrm{L}} \mathrm{dt}$
$\mathrm{W}_{\mathrm{L}}=\frac{1}{2} \cdot \mathrm{~L} \cdot \mathrm{I}{ }_{\mathrm{L}}{ }^{2} \quad{ }^{\mathrm{v}} \mathrm{L}=\mathrm{L} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i} \mathrm{L} \quad \quad$ Inductor current cannot change instantaneously

Replace capacitors with opens
Replace inductors with wires
For all first order transients: $\quad x(t)=x(\infty)+(x(0)-x(\infty)) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}} \quad \tau=\mathrm{R}_{\mathrm{Th}} \cdot \mathrm{C} \quad$ OR $\quad \frac{\mathrm{L}}{\mathrm{R}_{\mathrm{Th}}}$
Resonance: $\quad \omega_{\mathrm{o}}=\frac{1}{\sqrt{\mathrm{~L}_{\mathrm{eq}} \cdot \mathrm{C}_{\mathrm{eq}}}}$
Steady-state sinusoidal AC Impedances: $\quad Z_{C}=\frac{1}{j \cdot \omega \cdot C}=\frac{-j}{\omega \cdot C} \quad Z_{L}=j \cdot \omega \cdot L \quad \omega=2 \cdot \pi \cdot f$
$\mathrm{A}=|\mathbf{A}|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$
$\theta=\arg (\mathbf{A})=\operatorname{atan}\left(\frac{\mathbf{b}}{\mathbf{a}}\right)$
$\mathrm{a}=\mathrm{A} \cdot \cos (\theta)$
$\mathrm{b}=\mathrm{A} \cdot \sin (\theta)$

March 4, 2020
Closed Book, Closed notes, Calculators OK

ECE 2210/00 Exam 2 given: Spring 20 (Some space has been removed)

1. (32 pts) The switch has been closed for a long time and is opened (as shown) at time $t=0$.
a) Find the initial and final conditions and write the full expression for $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$, including all the constants that you find.

$$
\mathrm{I}_{\mathrm{S}}:=30 \cdot \mathrm{~mA}
$$

b) What is v_{C} when $t=2 \tau$?
c) At time $t=2 \tau$ the switch is closed again. Find the complete expression for $v_{C}\left(t^{\prime}\right)$, where t^{\prime} starts when the switch closes. Be sure to clearly show the time constant.
3. (22 pts) Find $\mathbf{Z}_{\text {eq }}$ in simple polar form (give me numbers).

For partial credit, you must show work and/or intermediate results.

$$
\mathrm{f}:=159.155 \cdot \mathrm{~Hz}
$$

3. (28 pts) $\quad \mathbf{V}_{\mathbf{a}}$ is the nodal voltage at node a and $\mathbf{V}_{\mathbf{b}}$ is the nodal voltage at node b.
a) Find $\mathbf{Z}_{\mathbf{2}}$ in polar form

b) $\quad \mathbf{I}_{\mathbf{1}}:=(20-25 \cdot \mathrm{j}) \cdot \mathrm{mA} \quad$ Find $\mathbf{V}_{\mathbf{i n}}$.

ECE 2210/00 Exam 2 Spring 20 p3

4. (18 pts) The current through some part and the voltage across the same part are shown below.
a) Tell me what kind of part it is.

b) Find the part's value.

Answers
 1. a) $9 \cdot V-5.4 \cdot \mathrm{~V} \cdot \mathrm{e}^{\frac{-\mathrm{t}}{1.2 \mathrm{~ms}}}$

b) $8.27 \cdot \mathrm{~V}$
c) $3.6 \cdot \mathrm{~V}+4.67 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{\mathrm{t}^{\prime}}{66 \cdot \mu \mathrm{~s}}}$
2. $22.0 \Omega /-50.5^{\circ}$
3. a) $95.8 \Omega /-65.1^{\circ}$
b) $7.3+5.71 \mathrm{jV}=9.27 \mathrm{~V} \underline{38.0^{\circ}}$
4. a) inductor
b) $0.2 \cdot \mathrm{mH}$

