ECE 2210/00 Exam 2 given: Spring 22 (Some space has been removed)

1. (12 pts) The following circuit has been connected as shown for a long time. $L:=60 \cdot \mathrm{mH}$

Find the energy stored in the capacitor and the inductor.
Also show the values of the voltage(s) and current(s) necessary to answer this question.
2. (32 pts) a) The switch has been closed for a long time and is opened (as shown) at time $t=0$.
a) Find the initial and final conditions and write the full expression for $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$, including all the constants that you find.

\qquad
b) What is v_{C} when $t=0.8 \tau ? \quad{ }^{v}{ }_{C}(0.8 \cdot \tau)=$?
c) At time $t=0.8 \tau$ the switch is closed again. Find the complete expression for $v_{C}\left(t^{\prime}\right)$, where t^{\prime} starts when the switch closes. Be sure to clearly show the time constant.
3. (10 pts) Find \mathbf{Z}_{eq} in any complex form (give me numbers \& units). $\mathrm{f}:=3 \cdot \mathrm{kHz}$

Prob 3 \qquad / 10
4. (10 pts) Reduce the following to a single complex number in either rectangular or polar form.
$6 \cdot e^{j \cdot 90 \cdot \operatorname{deg}}+\frac{1}{\left(\frac{1}{50}\right)+\frac{1}{\left(-j \cdot \frac{1}{0.04}\right)}}$
\qquad / 10

ECE 2210/00 Exam 2 Spring 22 p4

5. (22 pts) For partial credit, you must show work and/or intermediate results.
a) Find $\mathbf{I}_{\mathbf{2}}$ in any form.

b) Find $\mathbf{V}_{\mathbf{S}}$ in polar form.
c) Find $\mathbf{I}_{\mathbf{1}}$ in any form.

Prob 5 \qquad 122
6. (14 pts) The current through and the voltage across an unknown component are shown below.
a) What type of component is it? Give a good reson for your choice.

b) What is the value of the component?
b) $27 \cdot \mathrm{~V}$
c) $16 \cdot \mathrm{~V}+11 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{\mathrm{t}^{\prime}}{78 \cdot \mu \mathrm{~s}}}$
4. $10+14 \cdot j=17.2 /-54.46^{\circ}$

Prob 6 \qquad / 14
3. $(40-28.62 \cdot \mathrm{j}) \cdot \Omega=49.2 \Omega \quad \underline{-35.6^{\circ}}$

Total \qquad / 100
5. a) $(17.321-10 \cdot \mathrm{j}) \cdot \mathrm{mA}$
b) $4.68 \cdot V \cdot e^{-j \cdot 10 \cdot d e g}$
c) $(6.679+7 \cdot \mathrm{j}) \cdot \mathrm{mA}=9.676 \cdot \mathrm{~mA} \cdot \mathrm{e}^{\mathrm{j} \cdot 46.34 \cdot \mathrm{deg}}$
6. a) Capacitor
b) $100 \cdot \mu \mathrm{~F}$

