ECE2210/00 Exam 3 given: Fall 06

- 1. (18 pts)
 - a) Find V_{in} in polar form.
 - b) Find I_T in polar form..
 - c) Circle 1:
 - i) The source current leads the source voltage
 - ii) The source voltage leads the source current

You MUST show work to get credit.

Simplify your expression for H(s) so that the denominator is a simple polynomial beginning with s².

$$\mathbf{H}(s) = ?$$

b) Find the characteristic equation of the circuit shown.

c) The solutions to the characteristic equation are called the _____ of the transfer function.

- d) Does the transfer function have one or more zeros? If yes, express it (them) in terms of R1, R2, C, & L.
- 3. (20 pts) Analysis of a circuit (not pictured) yields the characteristic equation below.

0 17

 $0 = s^2 + 500 \cdot s + 62500$ $\mathbf{R} := 80 \cdot \Omega$ L := 640·mH $V_{in} = 12 \cdot V$ $C := 25 \cdot \mu F$ Further analysis yields the following initial and final conditions: • (0) 50 ···· A

 $\langle \mathbf{n} \rangle$

$$i_{L}(0) = 50 \cdot mA \qquad v_{L}(0) = -9 \cdot V \qquad v_{C}(0) = 4 \cdot V \qquad i_{C}(0) = 80 \cdot mA$$

$$i_{L}(\infty) = 110 \cdot mA \qquad v_{L}(\infty) = 0 \cdot V \qquad v_{C}(\infty) = 12 \cdot V \qquad i_{C}(\infty) = 0 \cdot mA$$

Write the full expression for i₁(t), including all the constants that you find.

Include units in your answer

 $i_{I}(t) = ?$

С

 R_2 V_i

R ₁

ECE2210/00 Exam 3 Fall 06 p2

5. (13 pts) The transformer shown in the circuit below is ideal. It is rated at 120/12 V, 8 VA, 60 Hz Find the following:

a)
$$I_1 = ?$$

 $V_s := 100 \cdot V$
b) $V_2 = ?$
 $V_s := 100 \cdot V$
 $V_s := 100 \cdot V$

- b) Find the initial condition and initial slope of v_c that you would need to have in order to find all the constants in $v_c(t)$. Don't find $v_c(t)$ or it's constants, just the initial conditions.
- c) Find the initial condition and initial slope of i_L that you would need to have in order to find all the constants in $i_L(t)$. Don't find $i_L(t)$ or it's constants, just the initial conditions.

Answers

1. a)
$$V_{in} = 3.6V (-36.9^{\circ})$$
 b) $I_{T} = 154mA (-27.9^{\circ})$ c) i) $-27.9^{\circ} > -36.9^{\circ}$
2. a) $\frac{s^{2} + \frac{R_{2}}{L} \cdot s}{s^{2} + (\frac{R_{1} + R_{2}}{L}) \cdot s + \frac{1}{LC}}$ b) $0 = s^{2} + (\frac{R_{1} + R_{2}}{L}) \cdot s + \frac{1}{LC}$ c) poles d) 0 and $-\frac{R_{2}}{L}$
3. $i_{L}(t) := 110 \cdot mA - 60 \cdot mA \cdot e^{\frac{250}{8ec}t} - 29 \cdot \frac{A}{sec} \cdot t \cdot e^{\frac{250}{8ec}t}$
4. a) $0 \cdot V$ b) $4.9 \cdot V$ ECE 2210 Exam #3
5. a) $40 \cdot mA$ b) $8 \cdot V$ Big Signary Signary