ECE2210/00 Exam 3 given: Fall 06

1. (18 pts)
a) Find $\mathbf{V}_{\text {in }}$ in polar form.
b) Find $\mathbf{I}_{\mathbf{T}}$ in polar form..
c) Circle 1:
i) The source current leads the source voltage
ii) The source voltage leads the source current

2. (15 pts) a) Find the s-type transfer function of the circuit shown. V_{i} is the input and V_{O} is the output.
You MUST show work to get credit.
Simplify your expression for $\mathrm{H}(\mathrm{s})$ so that the denominator is a simple polynomial beginning with s^{2}.

$$
\mathbf{H}(\mathrm{s})=\text { ? }
$$

b) Find the characteristic equation of the circuit shown.

c) The solutions to the characteristic equation are called the \qquad of the transfer function.
d) Does the transfer function have one or more zeros? If yes, express it (them) in terms of $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{C}$, \& L .
3. (20 pts) Analysis of a circuit (not pictured) yields the characteristic equation below.

$$
0=\mathrm{s}^{2}+500 \cdot \mathrm{~s}+62500 \quad \mathrm{R}:=80 \cdot \Omega \quad \mathrm{~L}:=640 \cdot \mathrm{mH} \quad \mathrm{C}:=25 \cdot \mu \mathrm{~F} \quad \mathrm{~V}_{\text {in }}:=12 \cdot \mathrm{~V}
$$

Further analysis yields the following initial and final conditions:
$\mathrm{i}_{\mathrm{L}}(0)=50 \cdot \mathrm{~mA}$
$v_{L}(0)=-9 \cdot V$
${ }^{\mathrm{v}} \mathrm{C}^{(0)}=4 \cdot \mathrm{~V}$
${ }^{\mathrm{i}} \mathrm{C}^{(0)}=80 \cdot \mathrm{~mA}$
${ }^{\mathrm{i}} \mathrm{L}^{(\infty)}=110 \cdot \mathrm{~mA}$
$\mathrm{v}_{\mathrm{L}}(\infty)=0 \cdot \mathrm{~V}$
${ }^{\mathrm{v}} \mathrm{C}^{(\infty)}=12 \cdot \mathrm{~V}$
${ }^{\mathrm{i}} \mathrm{C}^{(\infty)}=0 \cdot \mathrm{~mA}$

Write the full expression for $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$, including all the constants that you find.
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=$?
Include units in your answer
4. (10 pts) For waveform shown, find:
a) Average $D C\left(V_{D C}\right)$ value
b) RMS (effective) value

ECE2210/00 Exam 3 Fall 06 p2

5. (13 pts) The transformer shown in the circuit below is ideal. It is rated at $120 / 12 \mathrm{~V}, 8 \mathrm{VA}, 60 \mathrm{~Hz}$ Find the following:
a) $I_{1}=$?
b) $V_{2}=$?

6. (24 pts) Consider the circuit at right. The switch has been in the closed position for a long time and is open (as shown) at time $t=0$.
a) What are the final conditions of i_{L} and the v_{C} ?

$$
\mathrm{i}_{\mathrm{L}}(\infty)=? \quad \mathrm{v}_{\mathrm{C}}(\infty)=?
$$

$$
\mathrm{I}_{\mathrm{S}}:=300 \cdot \mathrm{~mA}
$$

b) Find the initial condition and initial slope of v_{C} that you would need to have in order to find all the constants in $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$. Don't find $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ or it's constants, just the initial conditions.
c) Find the initial condition and initial slope of i_{L} that you would need to have in order to find all the constants in $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$. Don't find $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ or it's constants, just the initial conditions.

Answers

1. a) $\mathbf{V}_{\text {in }}=3.6 \mathrm{~V} /-36.9^{\circ}$
b) $\mathbf{I}_{\mathbf{T}}=154 \mathrm{~mA} /-27.9^{\circ}$
c) i) $-27.9^{\circ}>-36.90$
2. a) $\frac{s^{2}+\frac{R_{2}}{L} \cdot s}{s^{2}+\left(\frac{R_{1}+R_{2}}{L}\right) \cdot s+\frac{1}{L \cdot C}}$
b) $0=\mathrm{s}^{2}+\left(\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{~L}}\right) \cdot \mathrm{s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}$
c) poles
d) 0 and $-\frac{\mathrm{R}_{2}}{\mathrm{~L}}$
3. $\mathrm{i}_{\mathrm{L}}(\mathrm{t}):=110 \cdot \mathrm{~mA}-60 \cdot \mathrm{~mA} \cdot \mathrm{e}^{-\frac{250}{\sec } \cdot \mathrm{t}}-29 \cdot \frac{\mathrm{~A}}{\mathrm{sec}} \cdot \mathrm{t} \cdot \mathrm{e}^{-\frac{250}{\sec } \cdot \mathrm{t}}$
$\begin{array}{ll}\text { 4. a) } 0 \cdot V & \text { b) } 4.9 \cdot V\end{array}$
4. a) $40 \cdot \mathrm{~mA}$
b) $8 \cdot \mathrm{~V}$
5. a) $300 \cdot \mathrm{~mA} \quad 60 \cdot \mathrm{~V}$
b) $20 \cdot \mathrm{~V} \quad 50000 \cdot \frac{\mathrm{~V}}{\mathrm{sec}}$
c) $100 \cdot \mathrm{~mA} \quad 2500 \cdot \frac{\mathrm{~A}}{\mathrm{sec}}$

ECE 2210 Exam \#3
Arn Stolp
Name
Scores:
Pgs 1\&2 \qquad of a possible 33 points

Pgs 3\&4 \qquad of a possible 30 points

Pgs 5\&6 \qquad of a possible 37 points

Total \qquad of a possible 100 points

