1. (18 pts)
a) Find $\mathbf{V}_{\text {in }}$ in polar form.
b) Find $\mathbf{I}_{\mathbf{T}}$.

$$
\mathbf{Z}_{1}=100 /-32^{\circ} \Omega
$$

c) Circle 1: i) The source current leads the source voltage
ii) The source voltage leads the source current
d) By how much? I.E. what is the phase angle between the voltage and current?
2. (18 pts) Analysis of a circuit (not pictured) yields the characteristic equation below.

$$
0=\mathrm{s}^{2}+100 \cdot \mathrm{~s}+42500 \quad \mathrm{R}:=10 \cdot \Omega \quad \mathrm{~L}:=100 \cdot \mathrm{mH} \quad \mathrm{C}:=20 \cdot \mu \mathrm{~F}
$$

Further analysis yields the followiing initial and final conditions:
$\mathrm{i}_{\mathrm{L}}(0)=120 \cdot \mathrm{~mA}$
$v_{L}(0)=-8 \cdot V$
${ }^{v} C(0)=6 \cdot V$
${ }^{\mathrm{i}} \mathrm{C}^{(0)}=80 \cdot \mathrm{~mA}$
$\mathrm{i}_{\mathrm{L}}(\infty)=80 \cdot \mathrm{~mA}$
$v_{L}(\infty)=0 \cdot V$
${ }^{v} C^{(\infty)}=2 \cdot V$
${ }^{\mathrm{i}} \mathrm{C}^{(\infty)}=0 \cdot \mathrm{~mA}$

Write the full expression for $i_{L}(t)$, including all the constants that you find. $\quad i_{L}(t)=$?
3. (22 pts) The switch has been the upper position for a long time and is switched down (as shown) at time $t=0$.

Show Units !

a) What are the final conditions of i_{L} and the v_{C} ?

$$
{ }^{\mathrm{i}} \mathrm{~L}^{(\infty)}=? \quad{ }^{\mathrm{v}} \mathrm{C}^{(\infty)}=?
$$

b) Find the initial condition and initial slope of i_{L} that you would need to have in order to find all the constants in $i_{L}(t)$. Don't find $i_{L}(t)$ or it's constants, just the initial conditions.
c) Find the initial condition and initial slope of v_{C} that you would need to have in order to find all the constants in $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$. Don't find $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ or it's constants, just the initial conditions.

ECE2210 Exam 3 Fall 07 p1

4. (18 pts) a) A feedback system is shown in the figure. What is the transfer function of the whole system, with feedback.

b) Find the value of K to make the transfer function critically damped.
c) If K is less than this value the system will be: underdamped or overdamped Circle one
d) Does the transfer function have a zero? Answer no or find the s value(s) of the zero(s).
5. (20 pts) $\mathrm{R}_{\mathrm{L}}, \& \mathrm{C}_{\mathrm{L}}$ together are the load in the circuit shown. The RMS voltmeter measures 180 V , the RMS ammeter measures 10 A , and the wattmeter measures 1200 W . Find the following: Be sure to show the correct units for each value.
a) The real power. $\mathrm{P}=$?
b) The value of the load resistor. $\mathrm{R}_{\mathrm{L}}=$?
c) The apparent power. $|\mathbf{S}|=$?

d) The reactive power. $Q=$?
e) The complex power. $\mathbf{S}=$?
f) The power factor. $\mathrm{pf}=$?
g) The power factor is: i) leading
ii) lagging (circle one)
h) The two components of the load are in a box which cannot be opened. Add (draw it) another component to the circuit above which can correct the power factor (make pf =1). Show the correct component in the correct place and find its value. This component should not affect the real power consumption of the load.
6. (4 pts) Find:
a) The average, $\mathrm{DC}\left(\mathrm{V}_{\mathrm{DC}}\right)$ voltage.
b) The RMS (effective) voltage

Answers

1. a) $6 \mathrm{~V} / 36.9^{\circ}$
b) $76.1 \mathrm{~mA} / 47.3^{\circ}$
c) i)
d) $10.4 \cdot \mathrm{deg}$
2. $80 \cdot \mathrm{~mA}+\mathrm{e}^{-\frac{50}{\mathrm{sec}} \cdot \mathrm{t}} \cdot\left(40 \cdot \mathrm{~mA} \cdot \cos \left(\frac{200}{\mathrm{sec}} \cdot \mathrm{t}\right)-390 \cdot \mathrm{~mA} \cdot \sin \left(\frac{200}{\mathrm{sec}} \cdot \mathrm{t}\right)\right)$
3. a) $30 \cdot \mathrm{~mA} \quad 9 \cdot \mathrm{~V}$
b) $50 \cdot \mathrm{~mA}-300 \cdot \frac{\mathrm{~A}}{\mathrm{sec}}$
c) $15 \cdot \mathrm{~V}-7500 \cdot \frac{\mathrm{~V}}{\mathrm{sec}}$
4. a) $2 \cdot \mathrm{~s} \cdot \frac{\frac{-5}{\mathrm{~K}} \cdot(\mathrm{~s}+20)}{\mathrm{s}^{2}+60 \cdot \mathrm{~s}+800+\frac{50}{\mathrm{~K}}}$
b) 0.5
c) underdamped
d) $\mathrm{s}=0 \quad \mathrm{~s}=-20$
5. a) $1200 \cdot \mathrm{~W}$
b) $12 \cdot \Omega$
c) $1.8 \cdot \mathrm{kVA}$
d) $-1.342 \cdot \mathrm{kVAR}$
e) $(1.2-1.342 \cdot \mathrm{j}) \cdot \mathrm{kVAR}$
f) .667
g) i) leading
h) $64.1 \cdot \mathrm{mH}$
6. a) $0 \cdot V$
b) $3.54 \cdot \mathrm{~V}$
