1. (23 pts) a) Draw the asymptotic Bode plot (the straight-line approximation) of the transfer function below. Accurately draw it on the graph provided.

You must show and use the method from the class notes to get the Bode plot. That is, show things like the corner frequency(ies), the approximations of the transfer function in each frequency region, calculations of dB, etc..

\[H(f) := \frac{j \cdot 10^{-f} \left(10 + \frac{j \cdot f}{2 \cdot \text{kHz}} \right)}{j \cdot f + 30 \cdot \text{Hz}} \]

b) The asymptotic Bode plot is not exact. Using a dotted line, sketch the actual magnitude of the transfer function \(|H(f)|\) on the plot above. Indicate the point(s) where the difference between the two lines is the biggest (draw arrow(s)) and write down the actual magnitude(s) at that (those) point(s).

2. (23 pts) a) A feedback system is shown in the figure. What is the transfer function of the whole system, with feedback.

\[H(s) = \frac{X_{\text{out}}(s)}{X_{\text{in}}(s)} = ? \]

SHOW YOUR WORK
Simplify your expression for \(H(s)\) so that the denominator is a simple polynomial, or better still, in a factored form.

Don't panic, it's just one loop followed by another loop!

b) Find the value of \(K\) to make the transfer function of the major loop critically damped.

c) Does the transfer function have a zero? Answer no or find the \(s\) value(s) of the zero(s).

d) Does the transfer function have a pole that doesn't depend on \(K\)? Answer no or find the \(s\) value of that pole.
3. (31 pts) The switch has been up in position 1 for a long time and is switched down to position 2 (as shown) at time \(t = 0 \).

a) What are the final conditions of \(i_L \) and the \(v_C \)?

\[
\begin{align*}
i_L(\infty) &= ? \\
v_C(\infty) &= ?
\end{align*}
\]

b) Find the initial condition and initial slope of \(i_L \) that you would need to have in order to find all the constants in \(i_L(t) \). Don't find \(i_L(t) \) or it's constants, just the initial conditions.

\[
R_1 = 32 \text{ } \Omega
\]

\[
C = 20 \mu \text{F}
\]

\[
R_2 = 80 \text{ } \Omega
\]

\[
R_3 = 120 \text{ } \Omega
\]

\[
L = 24 \text{ } \text{mH}
\]

Use constant-voltage-drop models for the diodes and LEDs on this exam.

4. (23 pts) Assume that diode \(D_1 \) does NOT conduct.

Assume that diodes \(D_2 \) and \(D_3 \) DO conduct.

a) Stick with these assumptions even if your answers come out absurd.

Find the following:

\[
\begin{align*}
V_{D1} &= \quad \quad \quad \\
I_{D2} &= \quad \quad \quad \\
I_{D3} &= \quad \quad \quad \\
V_A &= \quad \quad \quad
\end{align*}
\]

b) Based on the numbers above, was the assumption about \(D_1 \) correct? yes no (circle one)

How do you know? (Specifically show a value which is or is not within a correct range.)

c) Was the assumption about \(D_2 \) correct? yes no

How do you know? (Show a value & range.)

d) Was the assumption about \(D_3 \) correct? yes no

How do you know? (Show a value & range.)

e) Based on your answers to parts b), c) & e), Circle one:

i) The real \(I_{R1} < I_{R1} \) calculated in part a.

ii) The real \(I_{R1} = I_{R1} \) calculated in part a.

iii) The real \(I_{R1} > I_{R1} \) calculated in part a.

Justify your answer.

Answers

1. \[
\begin{align*}
\text{Frequency} & \quad 1 \quad 10 \quad 100 \quad 10^3 \quad 10^4 \quad 10^5 \quad 10^6 \\
30Hz & \quad 80 \quad 70 \quad 60 \quad 50 \quad 40 \quad 30 \quad 20 \\
20kHz & \quad 43dB & \quad 43dB
\end{align*}
\]