ECE 2210 Exam 3

Useful Information

Bode Plots

Look for places in $|\mathrm{H}(\mathrm{s})|$ where a real number and a j ω or jf term are added.
Set real = |imaginary| to find poles and zeroes.
Poles come from denominator of transfer function, zeroes from numerator.
Divide frequencies into regions \& find approx $|\mathrm{H}(\mathrm{s})|$ in each region by
simplifying each (real + imaginary) to just the largest part.

Slopes: $-20,0$, or $+20 \mathrm{~dB} /$ decade dB is $20 \cdot \log _{10}(|\mathrm{H}(\omega)|)$ cut corners by $3 \cdot \mathrm{~dB}$

2nd order tran.

Overdamped $\quad b^{2}-4 \cdot k>0 \quad s_{1}$ and s_{2} are real and negative
$X(t)=X(\infty)+B \cdot e^{s} \cdot{ }^{\cdot t}+D \cdot e^{s} \cdot{ }^{2} \quad X(0)=X(\infty)+B+D \quad \frac{d}{d t} X(0)=B \cdot s_{1}+D \cdot s_{2}$
Critically damped $\mathrm{b}^{2}-4 \cdot \mathrm{k}=0 \quad \mathrm{~s}_{1}=\mathrm{s}_{2}=-\frac{\mathrm{b}}{2}=\mathrm{s} \quad \mathrm{s}_{1}$ and s_{2} are real, equal and negative
$\mathrm{X}(\mathrm{t})=\mathrm{X}(\infty)+\mathrm{B} \cdot \mathrm{e}^{\mathrm{s} \cdot \mathrm{t}}+\mathrm{D} \cdot \mathrm{t} \cdot \mathrm{e}^{\mathrm{s} \cdot \mathrm{t}}$

$$
B=X(0)-X(\infty)
$$

$D=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{X}(0)-\mathrm{B} \cdot \mathrm{s}$
$\begin{array}{ccc}\text { Underdamped } & b^{2}-4 \cdot k<0 & s=\alpha \pm j \omega\end{array} \quad$ complex s_{1} and $s_{2} \quad D \quad D=\frac{d}{d t} X(0)-B \cdot \alpha$ $\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i}^{(0)}=\frac{{ }^{\mathrm{v}} \mathrm{L}^{(0)}}{\mathrm{L}} \quad \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v}_{\mathrm{C}}(0)=\frac{\mathrm{i}_{\mathrm{C}}(0)}{\mathrm{C}}$

Final Conditions, or "after a long time"

Replace capacitors with opens
Capacitor voltage cannot change instantaneously

Replace inductors with wires Inductor current cannot change instantaneously

System Block Diagrams

$\mathbf{A}(\mathrm{s}) \cdot \mathbf{B}(\mathrm{s})$

Standard feedback loop transfer function
$\frac{\mathbf{A}(\mathrm{s})}{1-\mathbf{A}(\mathrm{s}) \cdot \mathbf{B}(\mathrm{s})}$

Diodes

conducting not conducting

Use these models for the diodes and LEDs on this exam.

$-$
$\mathrm{V}_{\mathrm{d}}<0.7 \mathrm{~V}$ Check
LEDs: 2V

