a) Find V_{S} in the circuit below. Express it as a magnitude and phase angle (the way V_{O} is expressed). Show all the necessary work, not just the results from your calculator.
b) Consider Z_{2} as the load.

What is the power factor of this load?
c) How much power is dissipated by Z_{2} ?

2. (24 pts) Assume the transformer is ideal and all voltages and currents are RMS. The magnitude of the secondary voltage $\left(\left|\mathrm{V}_{2}\right|\right)$ is 48 V .
a) What is the magnitude of I_{2} ?
b) What is the power factor of the load?
c) How much power does the load dissipate?
d) What is the turns ratio (N) of this transformer?
e) What is the magnitude of I_{1} ?
$\mathrm{n}_{1}:=275$

$\mathrm{n}_{2}:=120$
$\mathrm{V}_{2}:=48 \cdot \mathrm{~V}$
f) What is the magnitude of V_{S} ?
g) What is the load as seen by V_{S} ? (magnitude and angle)
h) What is the power factor as seen by V_{S} ?
3. (12 pts) For the circuit show;
a) Find the differential equation for v_{L}.
b) Find the characteristic equation for v_{L}.

4. (18 pts) Analysis of a circuit for v_{X} yields the characteristic equation shown.

$$
s^{2}+75 \cdot s+1400=0
$$

a) Write an expression for $v_{X}(t)$. You don't have initial and final conditions, so you can't find the constants in this expression. Use letters in place of constants that you cannot find

$$
{ }^{v} X^{(t)}=
$$

b) This circuit is: overdamped critically damped underdamped (circle one)
c) Which, if any, of your constants above represents the final condition of v_{X} ?

EE1050 Exam 3 given: Spring 00 p2

5. (16 pts) Consider the circuit at right. The switch has been in the top position for a long time and is switched down at time $t=0$.
a) What is the final condition for the current i_{L} ?
b) Find the initial condition(s) of i_{L} that you would need to have in order to find all the constants in $i_{L}(t)$. Don' t find $i_{L}(t)$ or it' s constants, just the initial condition(s).

6. (10 pts) Find the transfer function $\mathrm{H}(\mathrm{s})=\frac{\mathrm{V}_{\mathrm{o}}(\mathrm{s})}{\mathrm{V}_{\mathrm{i}}(\mathrm{s})}$ for this circuit. Write $\mathrm{H}(\mathrm{s})$ in the normal form, as shown below.

$$
\begin{array}{ll}
\mathrm{H}(\mathrm{~s})=\mathrm{K} \cdot \frac{\mathrm{~s}^{\mathrm{n}}+\mathrm{k}_{1} \cdot \mathrm{~s}^{\mathrm{n}-1}}{\mathrm{~s}^{\mathrm{m}}+\mathrm{c}_{1} \cdot \mathrm{~s}^{\mathrm{m}-1}} & +\ldots+\mathrm{k}_{\mathrm{n}-1} \\
+\ldots+\mathrm{c}_{\mathrm{m}-1}
\end{array}
$$

Answers

1. a) $2.41 \mathrm{~V} /-22.6^{\circ}$
b) 0.5
c) 10.6 mW
2. a) 4.8 A
b) 0.883
c) 203 W
d) 0.436
e) 2.1 A
f) 110 V
g) $53 \Omega \quad-28^{\circ}$
h) 0.883
3. a) $\frac{d^{2}}{d t^{2}} v^{v}+\frac{1}{C \cdot R} \cdot \frac{d}{d t} v_{L}+\frac{1}{L \cdot C} \cdot v L=\frac{d^{2}}{d t^{2}}{ }^{v} S$
b) $0=\mathrm{s}^{2}+\frac{1}{\mathrm{C} \cdot \mathrm{R}} \cdot \mathrm{s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}$
4. a) $v_{X}(t)=\left(A+B \cdot e^{-40 t}+D \cdot e^{-35 \cdot t}\right) \cdot V$
b) overdamped
c) A
5. a) 120 mA
b) ${ }^{\mathrm{i}} \mathrm{L}^{(0)}=50 \mathrm{~mA}$
$\frac{d}{d i} \mathrm{~L} 0=3500 \cdot \frac{\mathrm{~A}}{\mathrm{sec}}$
$\mathrm{s}^{2}+\frac{\mathrm{R}_{2}}{\mathrm{~L}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}$
$s^{2}+\frac{R_{1}+R_{2}}{L} \cdot s+\frac{1}{L \cdot C}$

EE 1050 midterm \#3

April 17, 2000
Arn Stolp
Name
Scores:
Page 1 \qquad of a possible 42 points

Page 2 \qquad of a possible 32 points

Page 3 \qquad of a possible 26 points
\qquad of a possible 100 points

