1. (29 pts) A transformer is rated at 240 V primary, 120 V secondary, and 180VA. Assume the transformer is ideal and all voltages and currents are RMS.
a) What is the current rating of the primary?

b) What is the current rating of the secondary?
c) The secondary has 100 turns of wire. How many turns does the primary have?

$$
\left|\mathrm{Z}_{\mathrm{L}}\right|=20 \cdot \Omega \quad \mathrm{~V}_{\mathrm{L}}:=24 \cdot \mathrm{~V}
$$

d) $\mathrm{V}_{\mathrm{L}}:=24 \cdot \mathrm{~V}$ How big is the source voltage $\left(\left|\mathrm{V}_{\mathrm{S}}\right|\right)$ ?
e) The secondary load $\left(Z_{L}\right)$ has a magnitude of $20 \Omega$ at a power factor of $80 \%$. Find the secondary current, $I_{2}$ (magnitude and angle).
f) Find the primary current, $l_{1}$ (magnitude and angle).
h) How much average power does the power source $\left(\mathrm{V}_{\mathrm{S}}\right)$ supply?
g) How much average power does the load dissipate?
i) What is the load as seen by $\mathrm{V}_{\mathrm{S}}$ ? (magnitude and angle)
2. (21 pts) You're in the lab. You have a signal generator

Signal generator
 Vpp
(volts)
ii) low pass
iii) high pass
iv) band pass
v) band reject
vi) can't tell
b) What is the corner or
"break" frequency ( $\mathrm{f}_{\mathrm{c}}$ )?
(volts)

c) Which of the following could be your input voltage (as a function of time). Circle all that are right.
i) $v_{\text {in }}(\mathrm{t})=10 \cdot \cos (\omega \cdot \mathrm{t})$
ii) $\mathrm{v}_{\mathrm{in}}(\mathrm{t})=5 \cdot \cos (\omega \cdot \mathrm{t})$
v) $\mathrm{v}_{\text {in }}(\mathrm{t})=(10 \cdot \sqrt{2}) \cdot \cos (\omega \cdot \mathrm{t})$
iv) $\mathrm{v}_{\mathrm{in}}(\mathrm{t})=\frac{10}{\sqrt{2}} \cdot \cos (\omega \cdot \mathrm{t})$
d) Which of the circuits shown below could possibly be your circuit? (Circle all that could be, there may be more than one right answer.) In each case:
$\mathrm{C}:=0.2 \cdot \mu \mathrm{~F}$ and/or $\mathrm{L}:=32 \cdot \mathrm{mH}$







## EE1050 Exam 3 given: Spring 01

2e) Using your answers to part b) and d), find the value of R.
If you circled more than one circuit in part $d$, just pick one of those you circled and find $R$ for that one.
In each case:
$\mathrm{C}:=0.2 \cdot \mu \mathrm{~F}$
and/or
L $:=32 \cdot \mathrm{mH}$
3. (17 pts) Fill in the blanks in the following circuits.

Assume the LEDs have a 2 V forward voltage drop:



Assume the diodes are silicon with a 0.7 V forward voltage drop:

4. (25 pts) Analysis of the circuit shown yields the characteristic equation and $s$ values below.

The switch has been in the closed position for a long time and is opened (as shown) at time $t=0$. Find the initial and final conditions and write the full expression for $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$, including all the constants that you find. Don' t let the odd position of the switch throw you, just use it to find your initial conditions.
Clearly show important numbers (like initial and final conditions) to get partial credit. If you can' t find some of these, guess so that you can move on and demonstrate what you do know.

$$
0=s^{2}+\frac{\mathrm{R}_{1}}{\mathrm{~L}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}
$$



$$
s_{1}:=\left(-250+10^{4} \cdot \mathrm{j}\right) \cdot \frac{1}{\sec } \quad, \quad \mathrm{~s}_{2}:=\left(-250+10^{4} \cdot \mathrm{j}\right) \cdot \frac{1}{\sec }
$$

5. ( 8 pts ) The circuit in the previous problem has this characteristic equation: What value of $R_{1}$ would make this circuit critically damped?
$0=s^{2}+\frac{\mathrm{R} 1}{\mathrm{~L}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}$

## Answers

1. a) 0.75 A
b) 1.5 A
c) 200 turns
d) 48 V
e) $1.2 \mathrm{~A} / 36.9^{\circ}$
f) $0.6 \mathrm{~A} / 36.9^{\circ}$
g) 23 W
h) 23 W i) $80 \Omega \quad 36.9^{\circ}$
2. a) high pass
b) 2000 Hz
C) ii)
d) $1^{\text {st }} \& 4^{\text {th }}$ in first row
d) $398 \Omega$ or $402 \Omega$
$\begin{array}{ll}\text { 3. a) } 1.8 \mathrm{~V} 100 \Omega & \text { b) } 6 \mathrm{~mA} 2.6 \mathrm{~V} 13 \mathrm{~mA}\end{array}$
3. ${ }^{v} C^{(t)}:=e^{-250 t} \cdot\left(-4 \cdot V \cdot \cos \left(10^{4} \cdot t\right)+79.9 \cdot V \cdot \sin \left(10^{4} \cdot t\right)\right)+10 \cdot V$
4. $1.6 \mathrm{k} \Omega$

## EE1050 Exam 3 given: Spring 01

