1. (16 pts) A frequency response curve is shown below (dashed line).
a) Draw the Bode plot of $\mathrm{H}(\mathrm{f})$ (the straightline approximation) right on the curve.
b) List any and all corner frequencies that you can find from the graph above.
c) If there are any corners in the Bode plot associated with poles in the transfer function, list that/those corner frequency(ies) below (f_{p}).
d) If there are any corners in the Bode plot
 associated with zeroes in the transfer function, list list that/those corner frequency(ies) below (f_{z}).
e) This Bode plot is for what type of filter? Circle the best answer.
i) low pass
ii) high pass
iii) band pass
iv) band reject
v) sludge
vi) coffee
vii) can't tell
2. (20 pts) Analysis of a circuit (not pictured) yields the characteristic equation below.

$$
0=\mathrm{s}^{2}+40 \cdot \mathrm{~s}+400 \quad \mathrm{R}:=10 \cdot \Omega \quad \mathrm{~L}:=80 \cdot \mathrm{mH} \quad \mathrm{C}:=60 \cdot \mu \mathrm{~F}
$$

Further analysis yields the followiing initial and final conditions:
$\mathrm{i}_{\mathrm{L}}(0)=18 \cdot \mathrm{~mA}$
$v_{L}(0)=-6 \cdot V$
${ }^{v} C_{C}(0)=8 \cdot V$
${ }^{\mathrm{i}} \mathrm{C}^{(0)}=-120 \cdot \mathrm{~mA}$
$\mathrm{i}_{\mathrm{L}}(\infty)=10 \cdot \mathrm{~mA}$
$\mathrm{v}_{\mathrm{L}}(\infty)=0 \cdot \mathrm{~V}$
${ }^{v} C^{(\infty)}=2 \cdot \mathrm{~V}$
${ }^{\mathrm{i}} \mathrm{C}^{(\infty)}=0 \cdot \mathrm{~mA}$

Write the full expression for $v_{C}(t)$, including all the constants that you find. $\quad{ }^{v} C_{C}(t)=? \quad$ Include units in your answer
3. (24 pts) The switch has been open for a long time and is closed (as shown) at time $\mathrm{t}=0$.
a) What are the final conditions of i_{L} and the v_{C} ?
${ }^{\mathrm{i}} \mathrm{L}^{(\infty)}=? \quad{ }_{\mathrm{v}}^{\mathrm{C}}{ }^{(\infty)}=$?
b) Find the initial condition and initial slope of i_{L} that you would need to have in order to find all the constants in $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$. Don't find $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ or it's constants, just the initial conditions.
c) Find the initial condition and initial slope of v_{C} that you would need to have in order to find all the constants in $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$. Don't find $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ or it's constants, just the initial conditions.

4. (18 pts) a) A feedback system is shown in the figure.

ECE2210 Exam 3 Spring 08 p2 What is the transfer function of the whole system, with feedback.
$\mathrm{H}(\mathrm{s})=\frac{\mathrm{X}_{\text {out }}(\mathrm{s})}{\mathrm{X}_{\mathrm{in}}(\mathrm{s})}=$?
Simplify your expression for $\mathrm{H}(\mathrm{s})$ so that the denominator is a simple polynomial.
b) Find the value of D to make the transfer function critically damped.

c) If D is less than this value the system will be:
underdamped or overdamped Circle one
d) Does the transfer function have a zero? Answer no or find the s value(s) of the zero(s).
5. (22 pts) A transformer is rated at $480 \mathrm{~V} / 120 \mathrm{~V}, 1.8 \mathrm{kVA}$. Assume the transformer is ideal and all voltages and currents are RMS.
a) What is the current rating of the primary?

b) What is the current rating of the secondary?
c) The secondary has 100 turns of wire. How many turns does the primary have?
d) $\mathbf{V}_{\mathbf{L}}:=110 \cdot \mathbf{V}$ How big is the source voltage $\left(\left|\mathbf{V}_{\mathbf{S}}\right|\right)$?
$\left|\mathbf{Z}_{\mathbf{L}}\right|=10 \cdot \Omega$
pf := 85.\% lagging
$\mathbf{V}_{\mathbf{L}}:=110 \cdot \mathrm{~V}$
e) The secondary load $\left(\mathrm{Z}_{\mathrm{L}}\right)$ has a magnitude of 10Ω at a power factor of 85%, lagging. Find the secondary current, $\mathbf{I}_{\mathbf{2}}$ (magnitude and angle).
f) Find the primary current, \mathbf{I}_{1} (magnitude and angle).
g) How much average power does the load dissipate?
h) How much average power does the power source $\left(\mathbf{V}_{\mathbf{S}}\right)$ supply?
i) What is the load as seen by $\mathbf{V}_{\mathbf{S}}$? (magnitude and angle)

Answers

1. a)

b) $\mathrm{f}_{\mathrm{z} 1}:=30 \cdot \mathrm{~Hz}$
$\mathrm{f}_{\mathrm{p}}:=10 \cdot \mathrm{kHz}$
$\mathrm{f}_{\mathrm{z} 2}:=300 \cdot \mathrm{kHz}$
c) $\mathrm{f}_{\mathrm{p}}:=10 \cdot \mathrm{kHz}$
d) $\mathrm{f}_{\mathrm{z} 1}:=30 \cdot \mathrm{~Hz}$ $\mathrm{f}_{\mathrm{z} 2}:=300 \cdot \mathrm{kHz}$
e) i) low pass
2. a) $-\frac{3}{2} \cdot(s+10)$
$\mathrm{s}^{2}+30 \cdot \mathrm{~s}+200+\frac{12}{\mathrm{D}}$
b) 0.48
c) underdamped
d) $\mathrm{s}=-10$
3. a) $3.75 \cdot \mathrm{~A}$
b) $15 \cdot \mathrm{~A}$
c) 400
d) $440 \cdot \mathrm{~V}$
e) $11 \cdot \mathrm{~A}$
$-31.8 \cdot \mathrm{deg}$
f) $2.75 \cdot \mathrm{~A}$
$-31.8 \cdot \mathrm{deg}$
g) $1029 \cdot \mathrm{~W}$
h) $1029 \cdot \mathrm{~W}$
i) $160 \cdot \Omega$
$31.8 \cdot \mathrm{deg}$
4. $\mathrm{v}_{\mathrm{C}}(\mathrm{t}):=2 \cdot \mathrm{~V}+6 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{20}{\sec } \cdot \mathrm{t}}-1880 \cdot \frac{\mathrm{~V}}{\mathrm{sec}} \cdot \mathrm{t} \cdot \mathrm{e}^{-\frac{20}{\sec } \cdot \mathrm{t}}$
5. a) $120 \cdot \mathrm{~mA}$
$12 \cdot \mathrm{~V}$
b) $40 \cdot \mathrm{~mA} \quad 400 \cdot \frac{\mathrm{~A}}{\mathrm{sec}}$
c) $4 \cdot \mathrm{~V} \quad 1600 \cdot \frac{\mathrm{~V}}{\mathrm{sec}}$

ECE 2210 Exam \#3
Arn Stolp
Name
Scores:
Pgs 1\&2 \qquad of a possible 36 points

Pgs $3 \& 4$ \qquad of a possible 42 points

Pgs 5\&6 \qquad of a possible 22 points Total \qquad of a possible 100 points

