ECE 2210/00 Exam 3 given: Spring 09 (The space between problems has been removed.)

1. (20 pts) a) Draw the asymptotic Bode plot (the straight-line approximation) of the transfer function below.
 Accurately draw it on the graph provided.
 You must show the steps you use to get the Bode plot. That is, show things like the corner frequency(ies),
 the approximations of the transfer function in each frequency region, calculations of dB, etc..

 \[H(f) = \frac{10 \cdot j \cdot f \cdot \left(\frac{1 + \frac{j \cdot f}{40 \text{kHz}}}{(200 \text{Hz} + j \cdot f)} \right)}{} \]

 b) The asymptotic Bode plot is not exact. Using a dotted line, sketch the actual magnitude of the transfer
 function \(|H(f)|\) on the plot above. Indicate the point(s) where the difference between the two lines is the
 biggest (draw arrow(s)) and write down the actual magnitude(s) at that (those) point(s).

 c) If there are any corners in the Bode plot associated with poles in the transfer function, list that/those
 corner frequency(ies) below \(f_p\).

 d) If there are any corners in the Bode plot associated with zeroes in the transfer function, list that/those
 corner frequency(ies) below \(f_z\).

2. (12 pts) An electric motor is hooked to a 240-V, 60-Hz source.

 The motor draws the following complex power.
 \[S := (900 + 600j) \text{ VA} \]

 a) Add (draw it) a component to the drawing which can
 correct the power factor (make \(pf = 1\)). Show the
 correct component in the correct place and find its value.
 This component should not affect the mechanical power
 output of the motor.

 b) Is the source current \(|I_s|\) the same as the motor current \(|I_m|\) now that the component of part a) is added?

 If not, which is greater and by how much?

 Hint: \(|I_m|\) is still the original current, find it
 from the conditions before you added the
 component of part a).
3. (22 pts) R_L, & C_L together are the load in the circuit shown. The voltmeter, ammeter, and wattmeter measurements are shown. Find the following:
Include the correct units for each value.

a) The real power. \(P = \) ?

b) The value of the load resistor. \(R_L = \) ?

c) The apparent power. \(|S| = \) ?

d) The reactive power. \(Q = \) ?

e) The value of the capacitor. \(C_L = \) ?

f) The complex power. \(S = \) ?

g) The power factor. \(pf = \) ?

h) The power factor is: i) leading ii) lagging (circle one)

4. (22 pts) Analysis of a circuit (not pictured) yields the characteristic equation below.

\[
0 = s^2 + 800s + 160000
\]

Further analysis yields the following initial and final conditions:

\[
i_L(0) = 30-\text{mA} \quad v_L(0) = -7-\text{V} \quad v_C(0) = 5-\text{V} \quad i_C(0) = 70-\text{mA}
\]

\[
i_L(\infty) = 90-\text{mA} \quad v_L(\infty) = 0-\text{V} \quad v_C(\infty) = 12-\text{V} \quad i_C(\infty) = 0-\text{mA}
\]

Write the full expression for \(i_L(t) \), including all the constants that you find. \(i_L(t) = \) ? Include units in your answer

5. (24 pts) The switch has been open for a long time and is closed (as shown) at time \(t = 0 \).

a) What are the final conditions of \(i_L \) and the \(v_C \)?

\[
i_L(\infty) = ? \quad v_C(\infty) = ?
\]

b) Find the initial condition and initial slope of \(i_L \) that you would need to have in order to find all the constants in \(i_L(t) \). Don't find \(i_L(t) \) or it's constants, just the initial conditions.

c) Find the initial condition and initial slope of \(v_C \) that you would need to have in order to find all the constants in \(v_C(t) \). Don't find \(v_C(t) \) or it's constants, just the initial conditions.

Answers

1. (a) & (b)

2. a) 27.6-\mu F b) I_M 0.757-A

3. a) 900-W b) 36-\Omega c) 1.2-kVA

4. (a) 900-\text{W} \quad (b) 36-\text{\Omega} \quad (c) 1.2-\text{kVA}

5. a) 20-\text{mA} b) 4-\text{V} c) 7-\text{V} d) 500-\text{A/\sec} e) 83.5-\mu F

4. \(i_L(t) \) is: 90-\text{mA} - 60-\text{mA}e^{-400t} - 44-\text{A/\sec} - 400t \text{e}^{-400t}

5. a) 20-\text{mA} b) 4-\text{V} c) 7-\text{V} d) 500-\text{A/\sec} e) 83.5-\mu F