ECE 2210 Exam 3 given: Spring 18

1. (22 pts) a) Draw the asymptotic Bode plot (the straight-line approximation) of the transfer function below. Accurately draw it on the graph provided.
You must show the steps you use to get the Bode plot. That is, show things like the corner frequency(ies), the approximations of the transfer function in each frequency region, calculations of dB , etc..
$H(f):=\frac{5 \cdot j \cdot f \cdot\left(4+\frac{j \cdot f}{10 \cdot k H z}\right)}{(100 \cdot H z+0.5 \cdot j \cdot f)}$

b) The asymptotic Bode plot is not exact. Using a dotted line, sketch the actual magnitude of the transfer function $|\mathrm{H}(\mathrm{f})|$ on the plot above. Indicate the point(s) where the difference between the two lines is the
\qquad biggest (draw arrow(s)) and write down the actual magnitude(s) at that (those) point(s).

ECE 2210 Exam 3 Spring 18 p2
2. (21 pts) a) A feedback system is shown in the figure. What is the transfer function of the whole system, with feedback.

b) Find the value of G to make the transfer function critically damped.
c) If G is less than this value the system will be: underdamped or overdamped Circle one
d) Does the transfer function have a zero? Answer "no" or find the s value(s) of the zero(s).

ECE 2210 Exam 3 Spring 18 p3
3. (35 pts) The switch has been closed for a long time and is opened (as shown) at time $\mathrm{t}=0$.

SHOW YOUR WORK, no credit for guesses!
a) What are the final conditions of i_{L} and the v_{C} ?
${ }^{\mathrm{i}} \mathrm{L}^{(\infty)}=$?
${ }^{\mathrm{v}} \mathrm{C}^{(\infty)}=$?

b) Find the initial condition and initial slope of i_{L} that you would need to have in order to find all the constants in $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$. Don't find $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ or it's constants, just the initial conditions.
c) Find the initial condition and initial slope of v_{C} that you would need to have in order to find all the constants in $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$. Don't find $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ or it's constants, just the initial conditions.

Answers

ECE 2210 Exam 3 Spring 18 p4

Folder Number \qquad
2. a) $(\mathrm{s}+12) \cdot \frac{\mathrm{G} \cdot 80 \cdot \mathrm{~s}+\mathrm{G} \cdot 4800}{\mathrm{~s}^{2}+90 \cdot \mathrm{~s}+800 \cdot \mathrm{G}+1800}$
b) 0.281
c) overdamped
d) $-12 \quad-60$
3. a) $2.4 \cdot \mathrm{~V} \quad 240 \cdot \mathrm{~mA}$
b) $180 \cdot \mathrm{~mA} \quad 150 \cdot \frac{\mathrm{~A}}{\mathrm{sec}}$
c) $1.8 \cdot \mathrm{~V} \quad 15000 \cdot \frac{\mathrm{~V}}{\mathrm{sec}}$
4. a) $5 \cdot \mathrm{~mA} \quad 17 \cdot \mathrm{~mA} \quad 10 \cdot \mathrm{~mA} \quad-12 \cdot \mathrm{~mA}$
b) $\mathrm{I}_{\mathrm{D} 1}=17 \cdot \mathrm{~mA}>0$ yes
c) $\mathrm{V}_{\mathrm{D} 2}=0.3 \cdot \mathrm{~V}<0.7 \mathrm{~V}$ yes
d) $\mathrm{I}_{\mathrm{D} 3}=-12 \cdot \mathrm{~mA}<0$ no

ECE 2210 Exam 3 Spring 18 p5

4. (22 pts) Assume that diodes D_{1} and $\mathrm{D}_{3} \mathrm{DO}$ conduct. Assume that diode D_{2} does NOT conduct.
a) Find $\mathrm{I}_{\mathrm{R} 1}, \mathrm{I}_{\mathrm{D} 1}, \mathrm{I}_{\mathrm{R} 2}, \& \mathrm{I}_{\mathrm{D} 3}$ based on these assumptions. Stick with these assumptions even if your answers come out absurd.

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{R} 1}= & \mathrm{I}_{\mathrm{D} 1}= \\
\mathrm{I}_{\mathrm{R} 2}= & \mathrm{I}_{\mathrm{D} 3}= \\
\hline
\end{array}
$$

b) Based on the numbers above, was the assumption about D_{1} correct? yes no (circle one)

How do you know? (Specifically show a value which is or is not within a correct range.)
c) Was the assumption about D_{2} correct? yes no (circle one) How do you know?
d) Was the assumption about D_{3} correct? yes
no
(circle one)
How do you know?

