ECE2210 Exam 3 Spring 2022

Useful Information

Bode Plots

Look for places in $|\mathrm{H}(\mathrm{s})|$ where a real number and a j ω or jf term are added.
Set real = |imaginary| to find poles and zeroes.
Poles come from denominator of transfer function, zeroes from numerator.
Divide frequencies into regions \& find approx $|\mathrm{H}(\mathrm{s})|$ in each region by
simplifying each (real + imaginary) to just the largest part.

Slopes: $-20,0$, or $+20 \mathrm{~dB} /$ decade dB is $20 \cdot \log _{10}(|\mathrm{H}(\omega)|)$
cut corners by $3 \cdot \mathrm{~dB}$

Overdamped $\quad b^{2}-4 \cdot k>0 \quad s_{1}$ and s_{2} are real and negative
$X(t)=X(\infty)+B \cdot e^{s} 1 \cdot t \cdot D \cdot e^{s} \cdot{ }^{\cdot t}$

$$
\mathrm{X}(0)=\mathrm{X}(\infty)+\mathrm{B}+\mathrm{D}
$$

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{X}(0)=\mathrm{B} \cdot \mathrm{~s}_{1}+\mathrm{D} \cdot \mathrm{~s}_{2}
$$

Critically damped $\mathrm{b}^{2}-4 \cdot \mathrm{k}=0 \quad \mathrm{~s}_{1}=\mathrm{s}_{2}=-\frac{\mathrm{b}}{2}=\mathrm{s} \quad \mathrm{s}_{1}$ and s_{2} are real, equal and negative
$X(t)=X(\infty)+B \cdot e^{s \cdot t}+D \cdot t \cdot e^{s \cdot t}$
$B=X(0)-X(\infty)$
$D=\frac{d}{d t} X(0)-B \cdot s$
Underdamped $b^{2}-4 \cdot k<0 \quad s=\alpha \pm j \omega \quad$ complex s_{1} and s_{2}
$X(t)=X(\infty)+e^{\alpha \cdot t} \cdot(B \cdot \cos (\omega \cdot t)+D \cdot \sin (\omega \cdot t))$
$B=X(0)-X(\infty)$
$D=\frac{\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{X}(0)-\mathrm{B} \cdot \alpha}{\omega}$
$\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{L}}(0)=\frac{{ }^{\mathrm{v}} \mathrm{L}^{(0)}}{\mathrm{L}} \quad \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v}_{\mathrm{C}}(0)=\frac{\mathrm{i}_{\mathrm{C}}(0)}{\mathrm{C}}$

Replace capacitors with opens
Capacitor voltage cannot change instantaneously

Replace inductors with wires Inductor current cannot change instantaneously

System Block Diagrams

$\mathbf{A}(\mathrm{s}) \cdot \mathbf{B}(\mathrm{s})$
 Standard feedback loop transfer function $\frac{\mathbf{A}(\mathrm{s})}{1-\mathbf{A}(\mathrm{s}) \cdot \mathbf{B}(\mathrm{s})}$

Diodes
conducting not conducting

$-\quad-$
$\mathrm{V}_{\mathrm{d}}<0.7 \mathrm{~V}$ Check
LEDs: 2V

$$
\overbrace{-}^{+}+\mathrm{V}_{\mathrm{Z}}^{\mathrm{V}=\text { zeltage }}
$$

April 12022
Closed Book, Closed notes, Calculators OK. Show all work to receive credit Circle answers, show units, and round off reasonably

ECE 2210/00 Exam 3 Spring 22 p1

1. (22 pts) a) Draw the asymptotic Bode plot (the straight-line approximation) of the transfer function below. Accurately draw it on the graph provided.
You must show and use the method from the class notes to get the Bode plot. That is, show things like the corner frequency(ies) , the approximations of the transfer function

$$
\mathrm{H}(\mathrm{f}):=\frac{5000 \cdot \mathrm{~Hz} \cdot \mathrm{j} \cdot \mathrm{f}}{(1 \cdot \mathrm{~Hz}+0.05 \cdot \mathrm{j} \cdot \mathrm{f}) \cdot\left(1 \cdot \mathrm{kHz}+\frac{\mathrm{j} \cdot \mathrm{f}}{30}\right)}
$$ in each frequency region, calculations of $d B$, etc..

Indicate which corner frequency(ies) are poles and/or zeroes .

Magnitude plot

Straight-line approximation
Actual \qquad 40 dB

b) The asymptotic Bode plot is not exact. Using a dotted line, sketch the actual magnitude of the transfer function $|\mathrm{H}(\mathrm{f})|$ on the plot above. Indicate the point(s) where the difference between the two lines is the biggest (draw arrow(s)) and write down the actual magnitude(s) at that (those) point(s).
\qquad
2. (20 pts) a) A feedback system is shown in the figure. What is the transfer function of the whole system, with feedback.
$\mathbf{H}(\mathrm{s})=\frac{\mathbf{X}_{\text {out }^{(s)}}^{\mathbf{X}_{\mathbf{i n}}(\mathrm{s})}}{}=?$
$\begin{aligned} & \text { SHOW YOUR WORK } \\ & \text { Simplify your expression for } \mathbf{H}(\mathbf{s}) \text { so that } \\ & \text { the denominator is a simple polynomial, } \\ & \text { like I do in solutions and in class. } \\ & \text { Factored form is better. } \\ & \text { Be clear about your signs, so I can }\end{aligned}$ tell you know what you're doing.
b) Find the value of K to make the transfer function critically damped.
c) If K is Greater than this value the system will be: underdamped or overdamped

Circle one
d) Does the transfer function have a zero? Answer no or find the s value of that zero.

ECE 2210/00 Exam 3 Spring 22 p3

3. (32 pts) The switch has been up in position 1 for a long time and is switched down to postion 2 (as shown) at time $\mathrm{t}=0$.

SHOW YOUR WORK, no credit for guesses!
a) What are the final conditions of i_{L} and the v_{C} ?

$$
\mathrm{i}_{\mathrm{L}}(\infty)=? \quad{ }^{\mathrm{v}} \mathrm{C}^{(\infty)}=?
$$

b) Find the initial condition and initial slope of i_{L} that you would need to have in order to find all the constants in $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$. Don't find $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ or it's constants, just the initial conditions.
c) Find the initial condition and initial slope of v_{C} that you would need to have in order to find all the constants in $\mathrm{v}_{\mathrm{C}}\left(\mathrm{t}\right.$. Don't find $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$ or it's constants, just the initial conditions.

Turn Over, last problem on the back ---->

2. a)
$\frac{-\frac{3}{6} \cdot(s+6)}{s^{2}+10 \cdot s+16+\frac{30}{K}}$
b) 3.333
c) overdamped
d) -6
3. a) $50 \cdot \mathrm{~mA} \quad 30 \cdot \mathrm{~V}$
b) $180 \cdot \mathrm{~mA}$
$2160 \cdot \frac{\mathrm{~A}}{\mathrm{sec}}$
c) $36 \cdot \mathrm{~V} \quad 0 \cdot \frac{\mathrm{~V}}{\mathrm{sec}}$
4. a) $1.3 \cdot \mathrm{~V} \quad 15 \cdot \mathrm{~mA} \quad 43 \cdot \mathrm{~mA} \quad 63 \cdot \mathrm{~mA}$
b) no
$1.3 \cdot \mathrm{~V}>0.7 \mathrm{~V}$
C) yes $15 \cdot \mathrm{~mA}>0$
d) yes $43 \cdot \mathrm{~mA}>0$

Use constant-voltage-drop models for the diodes and LEDs on this exam.
4. (22 pts) Assume that diode D_{1} does NOT conduct.

Assume that diodes D_{2} and $\mathrm{D}_{3} \mathrm{DO}$ conduct.
a) Stick with these assumptions even if your answers come out absurd.
Find the following:
$\mathrm{V}_{\mathrm{D} 1}=$ \qquad
${ }^{\mathrm{I}} \mathrm{D} 2=$ \qquad
$\mathrm{I}_{\mathrm{D} 3}=$ \qquad

b) Based on the numbers above, was the assumption about D_{1} correct? Circle one: yes no

How do you know? (Specifically show a value which is or is not within a correct range.)
c) Based on the numbers above, was the assumption about D_{2} correct? Circle one: yes no How do you know? (Show a value \& range.)
d) Based on the numbers above, was the assumption about D_{3} correct? Circle one: yes no How do you know? (Show a value \& range.)

Prob 4 \qquad / 26

