1. (18 pts)
a) Find and draw the Thévenin equivalent of the circuit shown. V_{S} represents a +DC power source (just like those you're used to seeing in transistor and op-amp circuits). If it helps you, draw a 12 V battery connected from ground to the V_{S}. The load resistor is not shown, but would be hooked between V_{O} and ground.
b) Find and draw the Norton equivalent of the same circuit.
c) A load of some sort is connected to the circuit above, it could be a simple resistor, or it could be a transistor circuit, or whatever. It draws a current of 0.1 mA , what is the value of V_{O} now?

EE1050 Final given: Fall 01 p2

5. (18 pts) a) Find the characteristic equation of the circuit shown (after the switch moves to the lower position at $t=0$). You MUST show work to get credit.
b) Find the solutions of the characteristic equation given these component values.
$\mathrm{R}_{1}:=25 \cdot \Omega$
$\mathrm{R}_{2}:=125 \cdot \Omega$
$\mathrm{L}:=5 \cdot \mathrm{mH}$
$\mathrm{C}:=0.08 \cdot \mu \mathrm{~F}$
c) This circuit is: (circle one)
i) underdamped

ii) critically damped
iii) overdamped
iv) can't tell
6. (22 pts) Assume the diodes are silicon with a 0.7 V forward voltage drop:

$$
\text { Assume the REDs have a } 2 \mathrm{~V} \text { forward voltage drop: }
$$

a) Assume that diode D_{1} and diode D_{2} both conduct.

Find $I_{R 1}, I_{R 2}, I_{R 3}, I_{D 1}$, and $I_{D 2}$ based on these assumptions.
$\mathrm{I}_{\mathrm{R} 1}=$ \qquad
$\mathrm{I}_{\mathrm{R} 2}=$ \qquad
$\mathrm{I}_{\mathrm{R} 3}=$ \qquad
$\mathrm{I}_{\mathrm{D} 1}=$ \qquad
$\mathrm{I}_{\mathrm{D} 2}=$ \qquad
b) Was the assumption about D_{1} correct? How do you know?

$$
\begin{aligned}
& \text { yes no } \\
& \text { (circle one) }
\end{aligned}
$$

c) Was the assumption about D_{2} correct?
yes no (circle one)

How do you know?
7. (16 pts) The input voltage to the circuit at right is shown below (dotted line). Accurately draw the output voltage you expect to see across R_{2} and the the diode. Label the important voltages and times

EE1050 Final given: Fall 01 p3

8. (36 pts) Fill in the blanks in the circuit.

You may neglect I_{B} (assume that it's 0).
b) Is the transistor operating in the active region?
(circle one) Yes No

Show your evidence.

c) If R_{C} is too big the transistor will no longer be in its active region and will saturate. What value of R_{C} just begins to cause saturation? Hint: Assume $\mathrm{V}_{\mathrm{CE}}=0.2 \mathrm{~V}$ and find the R_{C} that would cause that.

d) $\beta:=150 \quad$ Use the value of I_{C} that you calculated above to approximate the value of I_{B} (previously neglected).
e) Compare this value to $\mathrm{I}_{\mathrm{R} 1}$. Was it reasonable to neglect I_{B} ? (is $\mathrm{I}_{\mathrm{B}}<10 \%$ of $\mathrm{I}_{\mathrm{R} 1}$) Yes No (circle one)
f) If the I_{B} from part d were correct, would V_{B} be lower, higher or the same as you found earlier?

$$
\text { (circle one) } \quad V_{B} \text { would be: lower higher same }
$$

g) (4 pts extra credit) If the I_{B} from part d were correct, find V_{B}. Hint: problem 1.
h) Considering only I_{C} and V_{CE}, how much power does this transistor dissipate?
i) If the some components were added so that you could add an AC signal at the base, an AC signal would also appear at the collector. What signal gain do you expect to see?

$$
\frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{v}_{\mathrm{s}}}=?
$$

9. (8 pts) Design an amplifier with a gain of 10. The output voltage must be in phase with the input voltage (no inversion is allowed). Draw the circuit and show the values you would use.
10. (8 pts) Design an amplifier with a gain of 15 . The output voltage should be 180 out of phase with the input voltage (inversion is required). Its input resistance must be greater than $10 \mathrm{k} \Omega$. That is, from the input's point of view, the amplifier should look like more than a $10 \mathrm{k} \Omega$ resistor hooked to ground.

EE1050 Final given: Fall 01 p4

11. (10 pts) You want to make the amplifier of problem 10 in the lab, using a LM324 op-amp. (Yes, you must have an answer for problem 10, make a guess if you don' t know but include at least two components besides the op-amp in your guess.)
Show parts with values (may be shown as schematic symbols).
Show power supply connections. (You don' t need to show extra power supply filter capacitors.)
Show all ground connections.
Show signal input connection(s).
Show scope connection(s) to observe the output on Cl
Crossing wires will not be assumed to connect unless yc show a dot at the crossing. I have shown CH 1 scope connections to the signal generator as an example.

12. Do you want your grade and scores posted on my door and on the internet? Yes No (Circle one) If your answer is yes, then provide some sort of alias or password: \qquad
The grades will be posted on my door in alphabetical order under the alias that you provide here. I will not post grades under your real name. The internet version will be an excel spreadsheet which you can download. Both will show all your homework, lab, and exam scores.
Answers
$\mathrm{R}_{\mathrm{Th}}:=898 \cdot \Omega$
b)
$R_{N}:=898 \cdot \Omega$
c) 2.11 V
1.a)

$$
\mathrm{I}_{\mathrm{N}}:=2.45 \cdot \mathrm{~mA}
$$

2. $2.2 \cdot \mathrm{~V}-2.2 \cdot \mathrm{~V} \cdot \mathrm{e}^{\frac{\mathrm{t}}{1.8 \cdot \mathrm{~ms}}}$
3. a) 0.1 A
b) 13.2 V
4. a) $I_{i n}=20 \mathrm{~mA} / 36.9^{\circ}$
b) $\mathrm{V}_{\mathrm{T}}=4.57 \mathrm{~V} / 4.47^{\circ}$
c) 0.844
d) ii, leading, angle of V_{T} is greater than $I_{\text {in }}$
5. a) $0=s^{2}+\frac{1}{R_{2} \cdot C} \cdot s+\frac{1}{L \cdot C}$
b) $-50,0001 / \mathrm{sec}$
c) ii, critically damped
6. a) $28 \mathrm{~mA} \quad 50 \mathrm{~mA} \quad 80 \mathrm{~mA} \quad 22 \mathrm{~mA} \quad-30 \mathrm{~mA}$
b) yes, $I_{D 1}=22 m A>0$
c) $\mathrm{no}, \mathrm{I}_{\mathrm{D} 2}=-30 \mathrm{~mA}<0$

8. a) $\mathrm{V}_{\mathrm{B}}=2.2 \mathrm{~V} \quad \mathrm{I}_{\mathrm{R} 1}=2 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{E}}=1.5 \mathrm{~V} \quad \mathrm{I}_{\mathrm{C}} \simeq \mathrm{I}_{\mathrm{E}}=15 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{C}}=7.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{CE}}=6 \mathrm{~V}$
b) yes, $\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}>0.2 \mathrm{~V}$
c) 687Ω
d) 0.1 mA
e) $I_{B}=5 \% I_{R 1}$, yes
f) lower
g) 2.11 V
h) 90 mW
i) 3
9. $\mathrm{R}_{1}=$ any value from 100Ω to $110 \mathrm{k} \Omega$
R_{f} is 9 times bigger $\left(R_{f}=9 R_{1}\right)$.
10. $R_{1}=$ any value from $11 \mathrm{k} \Omega$ to $66 \mathrm{k} \Omega$ R_{f} is 15 times bigger $\left(R_{f}=15 R_{1}\right)$.

