ECE2210 Final given: Fall 07

1. (17 pts) For waveform shown, find:
a) Average $\mathrm{DC}\left(\mathrm{V}_{\mathrm{DC}}\right)$ value
b) RMS (effective) value

c) The voltage is hooked to a resistor, as shown, for 6 seconds.

$$
\mathrm{R}_{\mathrm{L}}:=50 \cdot \Omega
$$

How much energy is transfered to the resistor during that 6 seconds?
2. (18 pts)
a) Find: $\mathrm{V}_{1} \quad \mathrm{I}_{2} \quad \& \quad \mathrm{I}_{1}$
b) $\mathrm{V}_{\mathrm{S} 2}$ Supplies how much power to the circuit?

3. (28 pts) a) Draw the asymptotic Bode plot (the straight-line approximation) of the filter circuit below.

Accurately draw it on the graph provided. V_{in} is the input and V_{O} is the output of this circuit. Graph is in rad/sec. You must show the steps you use to get the Bode plot. That is, show things like the corner frequency(ies), the approximations of the transfer function in each frequency region, calculations of dB , etc..

b) The asymptotic Bode plot is not exact. The actual magnitude of the transfer function can be a little different than the straight-line approximation. Draw in the actual frequency response curve with a dashed line.
For the frequency(ies) where the curves are most different, indicate the actual dB on the plot.
c) If there are any corners in the Bode plot associated with poles in the transfer function, list that/those corner frequency(ies) below $\left(\omega_{p}\right)$.
d) If there are any corners in the Bode plot associated with zeroes in the transfer function, list that/those corner frequency(ies) below $\left(\omega_{z}\right)$.
e) What is the value of L_{1} ?

Hint: Find the Transfer function in terms of $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{R}, \& \omega$ and compare what you get to my transfer function.
4. (16 pts) a) Find the s-type transfer function of the circuit shown. $\mathrm{I}_{\text {in }}$ is the input and V_{O} is the "output".
You MUST show work to get credit. Simplify your expression for $\mathrm{H}(\mathrm{s})$ so that the denominator is a simple polynomial.

Hint: The "output" is a voltage and the input is a current. What is voltage over current?

$$
\mathbf{H}(\mathrm{s})=\text { ? }
$$

b) Find the characteristic equation of the circuit shown.

c) The solutions to the characteristic equation are called the \qquad of the transfer function.
d) How many zeroes does the transfer function have?

Assume the transformers are ideal and all voltages and currents are RMS.
5. (14 pts) The transformer shown in the circuit below is ideal. It is rated at $240 / 48 \mathrm{~V}, 20 \mathrm{VA}, 60 \mathrm{~Hz}$ Find the following:
a) $I_{1}=$?
b) $V_{2}=$?
c) $\mathrm{I}_{2}=$?

6. (6 pts) A transformer is rated at $240 \mathrm{~V} / 120 \mathrm{~V}, 1.2 \mathrm{kVA}$. How much power does the load consume?

$$
\left|\mathbf{V}_{\mathbf{S}}\right|=120 \cdot \mathbf{V}
$$

Use constant-voltage-drop models for the diodes and LEDs on this exam.

$\left|\mathbf{Z}_{\mathbf{L}}\right|=16 \cdot \Omega$
pf $:=80 \% \quad$ lagging
7. (20 pts) Assume that diodes D_{1} and $\mathrm{D}_{3} \mathrm{DO}$ conduct.
a) Find $\mathrm{I}_{\mathrm{R} 1}, \mathrm{I}_{\mathrm{D} 1}, \mathrm{I}_{\mathrm{R} 2}, \& \mathrm{I}_{\mathrm{D} 3}$ based on these assumptions. Stick with these assumptions even if your answers come out absurd.
$\mathrm{I}_{\mathrm{R} 1}=$ \qquad
$\mathrm{I}_{\mathrm{D} 1}=$ \qquad
$\mathrm{I}_{\mathrm{R} 2}=$ \qquad
$\mathrm{I}_{\mathrm{D} 3}=$ \qquad
b) Based on the numbers above, was the assumption about D_{1} correct? yes no (circle one)
How do you know? (Specifically show a value which is or is not within a correct range.)

Assume that diode D_{2} does NOT conduct.
c) Was the assumption about D_{2} correct?
yes

no (circle one)

How do you know? (Specifically show a value which is or is not within a correct range.)
d) Was the assumption about D_{3} correct? yes no (circle one)

How do you know? (Specifically show a value which is or is not within a correct range.)
8. (14 pts) A voltage waveform (dotted line) is applied to the circuit shown. Accurately draw the output waveform (v_{o}) you expect to see. Label important times and voltage levels.

9. (25 pts) The same input signal (at right) is connected to several op-amp circuits below. Sketch the output waveform for each circuit. Clearly label important voltage levels on each output. If I can't easily make out what your peak values are, I'll assume you don't know. Don't forget to show inversions. The op-amp is connected to $+12 \mathrm{~V} \&-12 \mathrm{~V}$ power supplies.
a)

b)

$\mathrm{v}_{\mathrm{ob}}{ }^{(\mathrm{t})}$
(V)

9. continued, the input is repeated at right. The op-amp is connected toto $+12 \mathrm{~V} \&-12 \mathrm{~V}$ power supplies.
c)

d)

$v_{\text {od }}(\mathrm{t})$						
(Volts)						

10. (22 pts) A transistor is used to control the current flow through an inductive load (in the dotted box, it could be a relay coil or a DC motor).
a) Assume the transistor is in saturation (fully on) and that switch has been closed for a long time. What is the load current?
$\mathrm{I}_{\mathrm{C}}=$?
b) $\beta:=80$ find the minimum value of V_{S}, so that the transistor will be in saturation.

Use this V_{S} for the rest of the problem.
c) You got a bad transistor. $\quad \beta:=50$

Find the new I_{C}, and V_{CE} and P_{Q}.

The power dissipation was too high for the transistor and it burned out. You replace the transistor with a new one that has $\beta \geq 80$
d) The diode in this circuit conducts a significant current:
A) never.
D) when the switch closes.
B) when the switch opens.
E) whenever the switch is closed.
C) whenever the switch is open.
F) always.
e) The switch is opened and closed a few times. What is the maximum diode current you expect. (Answer 0 if it never conducts.)
11. Do you want your grade and scores posted on my door and on the Internet?

If your answer is yes, then provide some sort of alias or password: \qquad
The grades will be posted on my door in alphabetical order under the alias that you provide here. I will not post grades under your real name. The Internet version will be a pdf file which you can download. Both will show the homework, lab, and exam scores of everyone who answers yes here.

Answers

1. a) $0 \cdot \mathrm{~V}$
b) $2.83 \cdot \mathrm{~V}$
c) $0.96 \cdot \mathrm{~J}$
d) Converted to heat
2. a) $7 \cdot \mathrm{~V} \quad 20 \mathrm{~mA} \quad 100 \cdot \mathrm{~mA}$
b) -80 mW (negative because it absorbs power from the circuit)
3. a\&b) at right
c) $200 \mathrm{rad} / \mathrm{sec}$
d) $1600 \mathrm{rad} / \mathrm{sec}$
e) $140 \cdot \mathrm{mH}$
4. a)

$$
\frac{\mathrm{R}_{2} \cdot \mathrm{~s}^{2}+\left(\frac{\mathrm{R}_{2} \cdot \mathrm{R}_{1}}{\mathrm{~L}}+\frac{1}{\mathrm{C}}\right) \cdot \mathrm{s}+\frac{\mathrm{R}_{1}}{\mathrm{~L} \cdot \mathrm{C}}}{\mathrm{~s}^{2}+\frac{\mathrm{R}_{2}+\mathrm{R}_{1}}{\mathrm{~L}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}}
$$

$\begin{array}{lll}\text { b) } 0=s^{2}+\frac{R_{2}+R_{1}}{L} \cdot s+\frac{1}{\mathrm{~L} \cdot \mathrm{C}} & \text { c) poles } & \text { d) } 2\end{array}$
5. a) $200 \cdot \mathrm{~mA}$
b) $16 \cdot \mathrm{~V}$
c) $1 \cdot \mathrm{~A}$
6. $180 \cdot \mathrm{~W}$
7. a) $5 \cdot \mathrm{~mA}$
$17 \cdot \mathrm{~mA}$
$10 \cdot \mathrm{~mA}$
$12 \cdot \mathrm{~mA}$
b) yes $\mathrm{I}_{\mathrm{D} 1}=17 \cdot \mathrm{~mA}>0$
c) yes $\mathrm{V}_{\mathrm{D} 2}=0.3 \cdot \mathrm{~V}<0.7 \mathrm{~V}$
d) no $\quad \mathrm{I}_{\mathrm{D} 3}=-12 \cdot \mathrm{~mA}<0$
9. a) Inverted input waveform that would peak at -15 V and then at +15 V , but is clipped at -11 V and +11 V .
b) Like input waveform but 4 times bigger so it peaks at +8 V and then at -8 V .
c) Inverted 6 V amplitude input waveform offset by -6 V so that it would peak at -12 V (but is clipped at -11 V), positive peak is at 0 V , no clipping.
8.

