ECE2210 Final given: Fall 09

1. (19 pts) a) Find and draw the Thévenin equivalent of the circuit shown. The load resistor is R_{L}.
b) Find and draw the Norton equivalent of the same circuit.
c) Find the load current using your Thévenin equivalent circuit.

2. (12 pts) a) Find the s-type transfer function of the circuit shown. Consider I_{C} as the "output".

You MUST show work to get credit. Simplify your expression for $\mathrm{H}(\mathrm{s})$ so that the denominator is a simple polynomial.
$\mathbf{H}(\mathrm{s})=\frac{\mathbf{I}_{\mathbf{C}^{(\mathrm{s})}}}{\mathbf{I}_{\mathbf{i n}^{(\mathrm{s})}}}=$?
b) How many poles does this transfer function have?
c) How many zeroes does this transfer function have?

If it has 1 or more, express them (probably in terms of $\mathrm{R}_{1}, \mathrm{R}_{2}$, L and C).

3. $(15 \mathrm{pts})$ a) Find: $\mathrm{V}_{1} \& \mathrm{I}_{2}$
b) How much power does the 2-V battery supply to the circuit?

4. (21 pts) The transformer shown in the circuit below is ideal. It is rated at $220 / 110 \mathrm{~V}, 200 \mathrm{VA}, 60 \mathrm{~Hz}$ Find the following:

All values are RMS unless specified otherwise.
a) The primary current (magnitude).

$$
\left|\mathbf{I}_{\mathbf{1}}\right|=?
$$

b) The primary voltage (magnitude).

c) The secondary voltage (magnitude). $\left|\mathbf{V}_{\mathbf{2}}\right|=$?
d) The power supplied by the source. $\quad \mathrm{P}_{\mathrm{S}}=$?
e) Is this transformer operating within its ratings? Show your evidence.

ECE2210 Final given: Fall 09 p2

Use constant-voltage-drop models for the diodes and LEDs on this exam.
5. (22 pts) Assume that diode D_{1} does NOT conduct.

b) Based on the numbers above, was the assumption about D_{1} correct? Circle one: yes no How do you know? (Specifically show a value which is or is not within a correct range.)
c) Based on the numbers above, was the assumption about D_{2} correct? Circle one: yes no How do you know? (Specifically show a value which is or is not within a correct range.)
d) Based on the numbers above, was the assumption about D_{3} correct? Circle one: yes no How do you know? (Specifically show a value which is or is not within a correct range.)
5. continued
e) Based on your answers to parts b), c) \& d), Circle one:
i) The real $\mathrm{I}_{\mathrm{R} 3}<\mathrm{I}_{\mathrm{R} 3}$ calculated in part a.
ii) The real $\mathrm{I}_{\mathrm{R} 3}>\mathrm{I}_{\mathrm{R} 3}$ calculated in part a.
iii) The real $\mathrm{I}_{\mathrm{R} 3}=\mathrm{I}_{\mathrm{R} 3}$ calculated in part a.
6. (16 pts) A voltage waveform (dotted line) is applied to the circuit shown. Accurately draw the output waveform (v_{o}) you expect to see. Label important times and voltage levels.

ECE2210 Final given: Fall 09 p3

7. (34 pts) You have two input voltages to work with.

A 1 V battery and the waveform (at right).

The problems below are op-amp design problems. The answer should be a schematic of a circuit showing the values of all the parts. Use reasonable resistor values (in the 100Ω to $1 \mathrm{M} \Omega$ range). Also show how one or both of the sources are hooked up to your circuit. Most circuits won't need both.
a) Design a circuit which will output the waveform at right.

b) Design a circuit which will output the waveform at right.
c) What power supply or supplies are being used with your op-amps?

d) Design a circuit which will output the waveform at right.

e) Design a circuit which will output the waveform at right. Hint: Think nonlinear.

ECE2210 Final given: Fall 09 p4

8. (31 pts) A couple of transistors are used to control the current flow through an inductive load.
a) The switch is open, as shown. What is the minimum V_{2} needed to insure that transistor Q_{2} is in saturation.
$\beta_{2}=25 \quad V_{2}=$?

b) Find the power dissipated in transistor Q_{2} with this $\mathrm{V}_{2} . \quad \mathrm{P}_{\mathrm{Q} 2}=$?
c) What if the voltage V_{2} was too low so that the base voltage of transistor Q_{2} was only 8 V , how much power would be dissipated in transistor Q_{2} ?

$$
\text { IF } \quad \mathrm{V}_{\mathrm{B} 2}:=8 \cdot \mathrm{~V} \quad \mathrm{P}_{\mathrm{Q} 2}=\text { ? }
$$

d) The transistor Q_{2} was selected to be able to handle the power found in part b) (with a $2 x$ factor of safety). What would happen with the V_{2} of part c)?
V_{2} is NOT too low for the remainder of the problem, that is, use the V_{2} found in part a).
e) When the switch is closed, you would like transistor Q_{1} to saturate.

What minimum β_{1} would be required to achieve saturation?

Use the β_{1} for the remainder of the problem.
f) The diode in this circuit conducts a significant current:
A) never.
B) when the switch closes.
D) always.
C) whenever the switch is closed.
E) when the switch opens.
F) whenever the switch is open.
(circle one)
g) What is the maximum diode current you expect when the switch is cycled. (Answer 0 if it never conducts.)
h) This circuit design is:
A) incredibly fantastic.
C) dumb.
Why?
B) a very good design.
D) not a good design.

ECE2210 Final given: Fall 09 p4

9. (10 pts) Find the resonant frequency (or frequencies) of the circuit shown (in cycles/sec or Hz).
10. Do you want your grade and scores posted on my door and on the Internet? If your answer is yes, then provide some sort of password
or alias: \qquad
otherwise, leave blank

Answers $120 . \Omega$

1. a)

b)

The grades will be posted on my door in alphabetical order under the alias that you provide here. I will not post grades under your real name. The Internet version will be a pdf file which you can download. Both will show the homework, lab, and exam scores of everyone who answers here.
c) $72.7 \cdot \mathrm{~mA}$
2.a) $\frac{s^{2}+\frac{R_{2}}{L} \cdot s}{s^{2}+\frac{R_{2}}{L} \cdot s+\frac{1}{L \cdot C}}$
b) 2
c) $2,0 \&-\frac{\mathrm{R}_{2}}{\mathrm{~L}}$
6.

$\begin{array}{lll}\text { 3. a) }-8 \cdot \mathrm{~V} & -3 \cdot \mathrm{~mA} & \text { b) } 6 \cdot \mathrm{~mW}\end{array}$
4. a) $937 \cdot \mathrm{~mA}$
b) $93.7 \cdot \mathrm{~V}$
c) $46.85 \cdot \mathrm{~V}$
d) $87.8 \cdot \mathrm{~W}$
e) NO
$\mathrm{I}_{1_{\text {max }}}:=909 \cdot \mathrm{~mA}<\mathrm{I}_{1}$
5. a) $1 \cdot \mathrm{~V} \quad 20 \cdot \mathrm{~mA} \quad 13 \cdot \mathrm{~mA}$
b) no $\quad \mathrm{V}_{\mathrm{D} 1}=1 \cdot \mathrm{~V}>0.7 \mathrm{~V}$
c) yes
$\mathrm{I}_{\mathrm{D} 2}=13 \cdot \mathrm{~mA}>0$
d) yes $\mathrm{I}_{\mathrm{D} 3}=20 \cdot \mathrm{~mA}>0$
7. a) Non-inverting amp with $R_{f}=4 R_{1}$.
b) Inverting amp with $R_{f}=8 R_{1}$.
c) $\pm 12 \mathrm{~V}$
d) Summer with $R_{f}=6 R_{1}$, waveform is hooked to $R_{1} \& R_{f}=2 R_{2}$, battery + terminal is hooked to R_{2} and - to ground.
e) iii)
e) Comparator, waveform is hooked to noninverting input, other inputis hooked to ground.
8. a) $20.3 \cdot \mathrm{~V}$
b) $0.98 \cdot \mathrm{~W}$
c) $9.86 \cdot \mathrm{~W}$
d) Q_{2} will burn out.
e) 93.5
f) B
g) $4.9 \cdot \mathrm{~A}$
h) C D There are good ways to do this same thing without the extra requirement of V_{2}, and this extra voltage makes the transistor Q_{2} more vulnerable to failure (see part d).
9. $411 \cdot \mathrm{~Hz}$

