ECE2210 Final given: Fall 12

1. (15 pts) a) Find and draw the Thévenin equivalent of the circuit shown. The load resistor is R_{L}.
b) Find and draw the Norton equivalent of the same circuit.
c) Find the load current using your

Thévenin equivalent circuit.

2. (15 pts) a) Find the s-type transfer function of the circuit shown. Consider $\mathbf{I}_{\text {in }}$ as the input and $\mathbf{I}_{\mathbf{L}}$ as the "output".

You MUST show work to get credit. Simplify your expression for $\mathrm{H}(\mathrm{s})$ so that the denominator is a simple polynomial with no coefficient before the highest-order s term in the denominator.

$$
\mathbf{H}(\mathrm{s})=\text { ? }
$$

b) How many zeroes does this transfer function have?

If it has 1 or more, express them (probably in terms of R_{1}, R_{2}, R_{3}, L and C).
c) How many poles does this transfer function have?
3. (22 pts) A generator produces $300-\mathrm{V}, 60-\mathrm{Hz}$ power. It is connected through an extension cord to a single load which consumes 1.2 kW with a 80% lagging power factor. The total resistance of the wires in the extension cord is $\mathrm{R}_{\text {line }}$. The system efficiency is 96%.

Source end: 300-V
wires: $\mathrm{R}_{\text {line }}$
Efficiency: $96 \%=\frac{\mathrm{P}_{\text {out }}}{\mathrm{P}_{\text {in }}}$
Load end: 1.2 kW, 80% pf, lagging
a) Find the complex power $(P$ and $Q)$ provided by the source.
b) Find the current flowing in each wire of the extension cord.
c) What is the value of the line resistance? $\quad R_{\text {line }}=$?
d) What is the line voltage at the load? Just magnitude.
4. (12 pts) The transformer shown in the circuit below is ideal. It is rated at $220 / 55 \mathrm{~V}, 100 \mathrm{VA}, 60 \mathrm{~Hz}$ Find the following:
a) $V_{2}=$?
b) Is this transformer operating within its ratings? Show your evidence.

ECE2210 Final given: Fall 12 p2

5. (18 pts) The same input signal (at right) is connected to several op-amp circuits.
a) Sketch the output waveform for this circuit. Clearly label important voltage levels on the output. If I can't easily make out what your peak values are, l'll assume you don't know. Don't forget to show inversions.

$v_{o a}(t)$

output
${ }^{v} \mathrm{ob}^{(\mathrm{t})}$
(Volts)

ECE2210 Final given: Fall 12 p3

6. (34 pts) A couple of transistors are used to control the current flow through an inductive load. The switch has been closed, as shown, for a long time.
a) You measure the voltage at each collector (referenced to ground) as shown on the drawing. Find the power dissipated by transistor Q_{2}.
b) Find the β of transistor Q_{2}.
c) Find the β of transistor Q_{1}.
d) Find the minimum β for transistor Q_{1} to be in saturation.

$$
\beta_{1 \min }=\text { ? }
$$

You replace Q_{1} with a different transistor so that now: $\quad \beta_{1}:=200 \quad$ Use this from now on.
e) Find the new load current $\left(\mathrm{I}_{\mathrm{L}}\right)$ assuming transistor Q_{2} is in the active region.
f) Check the assumption that Q_{2} is in the active region and recaculate I_{L} if necessary.
g) The diode in this circuit conducts a significant current: (circle one)
A) never.
C) whenever the switch is closed.
E) when the switch opens.
B) when the switch closes.
D) always.
F) whenever the switch is open.
h) What is the maximum diode current you expect when the switch is cycled. (Answer 0 if it never conducts.)
7. (16 pts) Find the values below. Show your work.

Note: feel free to show work \& answers right on the schematic
a) $\mathrm{V}_{\text {Is }}=$?
b) $\mathrm{I}_{\mathrm{V} 2}=$?
c) $\mathrm{P}_{\mathrm{S}}=$?

b) $\mathrm{I}_{\mathrm{V} 2}=$?

ECE2210 Final given: Fall 12 p4

Use constant-voltage-drop models for the diodes and LEDs on this exam.
8. (18 pts) A voltage waveform (dotted line) is applied to the circuit shown. Accurately draw the output waveform (v_{o}) you expect to see. Label important times and voltage levels.

If you're not specific about your times and
 voltages, I'll assume you don't know !
9. (30 pts) Assume that diodes $\mathrm{D}_{1}, \mathrm{D}_{3}$ and $\mathrm{D}_{4} \mathrm{DO}$ conduct. Assume that diode D_{2} does NOT conduct.
a) Stick with these assumptions even if your answers come out absurd. Find the following and anything else you need in order to check the assumptions:
$\mathrm{I}_{\mathrm{R} 3}=$ \qquad
$\mathrm{I}_{\mathrm{D} 3}=$ \qquad
$\mathrm{V}_{\mathrm{D} 2}=$ \qquad
$\mathrm{I}_{\mathrm{D} 4}=$ \qquad
${ }^{\mathrm{I}} \mathrm{D} 1=$ \qquad

More on next page ===>

ECE2210 Final given: Fall 12 p5

b) Based on the numbers above, was the assumption about D_{1} correct? yes no (circle one) How do you know? (Specifically show a value which is or is not within a correct range.)
c) Was the assumption about D_{2} correct?

How do you know? (Show a value \& range.)
yes no
(circle one)
d) Was the assumption about D_{3} correct?
yes no
How do you know? (Show a value \& range.)
e) Was the assumption about D_{4} correct?
yes no
f) Based on your answers to parts
(circle one)
b), c), d) \& e), Circle one:

Justify your answer.
i) The real $\mathrm{I}_{\mathrm{D} 4}<\mathrm{I}_{\mathrm{D} 4}$ calculated in part a.
ii) The real $\mathrm{I}_{\mathrm{D} 4}=\mathrm{I}_{\mathrm{D} 4}$ calculated in part a.
iii) The real $\mathrm{I}_{\mathrm{D} 4}>\mathrm{I}_{\mathrm{D} 4}$ calculated in part a.
10. Do you want your grade and scores posted on the Internet? \qquad otherwise, leave blank \qquad If your answer is yes, then provide some sort of alias:

> The grades will be posted on line in pdf form in alphabetical order under the alias that you provide here. I will not post grades under your real name. It will show the homework, lab, and exam scores of everyone who answers here.

Answers

3. a) $1.25+0.9 \cdot \mathrm{j} \mathrm{kVA}$
b) $5.134 \cdot \mathrm{~A}$
5. a)

b)

c) $40 \cdot \mathrm{~mA}$
2. a)

b) 0
c) 2
4. a) $13.4 \cdot \mathrm{~V}$
b) $1.92 \cdot \mathrm{~A}$
6. a)
b) 34.9
c) 58.9
d) 97.3
e) $2.48 \cdot \mathrm{~A}$
f) $1.95 \cdot \mathrm{~A}$
g) E
h) $1.95 \cdot \mathrm{~A}$
7. a) $3 \cdot \mathrm{~V}$
b) $1 \cdot \mathrm{~mA}$
c) $60 \cdot \mathrm{~mW}$
8.

b) yes $\quad \mathrm{I}_{\mathrm{D} 1}=67.5 \cdot \mathrm{~mA}>0$
c) $\mathrm{no} \quad \mathrm{V}_{\mathrm{D} 2}=0.8 \cdot \mathrm{~V}>0.7 \mathrm{~V}$
d) no $\quad \mathrm{I}_{\mathrm{D} 3}=-7.5 \cdot \mathrm{~mA}<0$
e) yes $\mathrm{I}_{\mathrm{D} 4}=35 \cdot \mathrm{~mA}>0$
f) i The additional current from D_{3} doesn't really flow.

