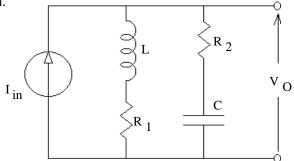

ECE2210 Final given: Fall 14 1. (12 pts) a) Find the poles (numbers) of the following transfer function: Where: $R := 50 \cdot \Omega$ $L := 8 \cdot mH$ $C_1 := 0.2 \cdot \mu F$ $C_2 := 0.1 \cdot \mu F$ $H(s) = \frac{s^2 + \frac{1}{R \cdot (C_1 + C_2)} \cdot s + \frac{1}{L \cdot C_1}}{s^2 + \frac{R}{L} \cdot s + \frac{1}{L \cdot C_1}}$	-
Where: $R := 50 \cdot \Omega$ $L := 8 \cdot mH$ $C_1 := 0.2 \cdot \mu F$ $C_2 := 0.1 \cdot \mu F$ $s^2 + \frac{R}{L} \cdot s + \frac{1}{L \cdot C_1}$	
b) This system represented by this transfer function is: (circle one) i) underdamped ii) critically damped iii) overdamped c) What value of C_1 would make this system critically damped? 2. (18 pts) a) Find: $V_1 \& I_2$ iv) impossible to tell $R_1 := 125 \cdot \Omega$ $I_S := 80 \cdot MA$ $+ V_1$	
b) I _S Supplies how much power to the circuit?	
3. (18 pts) The switch has been open for a long time and is closed (as shown) at time t = 0. $R_{\pm} = 1 \cdot k\Omega$	

Find the complete expression for $v_{\rm C}(t)$.


4. (14 pts) a) Find the s-type transfer function of the circuit shown.

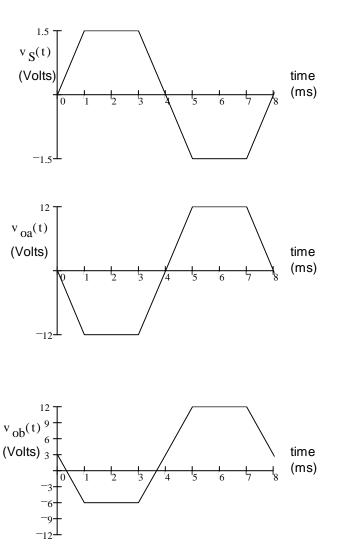
 I_{in} is the input and $V_{\rm O}$ is the "output".

You $\underline{\text{MUST}}$ show work to get credit. Simplify your expression for $\mathbf{H}(s)$ so that the denominator is a simple polynomial in standard form.

Hint: The "output" is a voltage and the input is a current. What is voltage over current?

 $\mathbf{H}(s) = ?$

b) How many zeroes does the transfer function have?

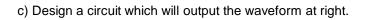

ECE2210 Final given: Fall 14 p2

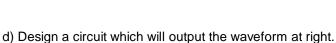
 (34 pts) You have two input voltages to work with. A 1V battery and the waveform (at right).

The problems below are op-amp design problems. The answer should be a schematic of a circuit showing the values of all the parts. Use reasonable resistor values (in the 100Ω to $1 M\Omega$ range). Also show how one or both of the sources are hooked up to your circuit. Most circuits won't need both.

a) Design a circuit which will output the waveform at right.

 $v_{oc}(t)$


(Volts)


 $v_{od}(t)$

(Volts)

2 3 4

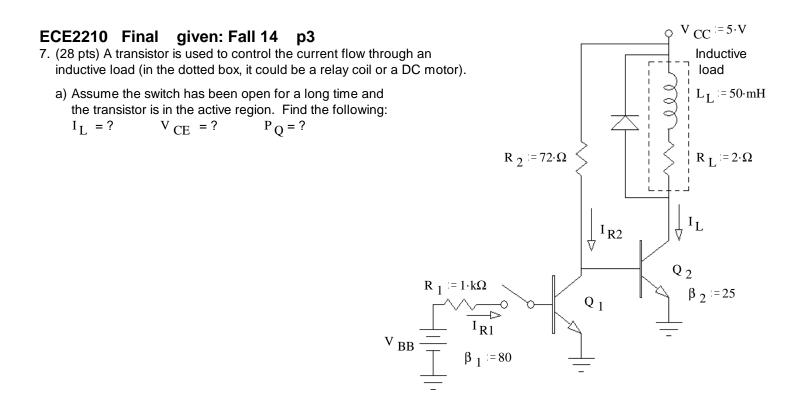
b) Design a circuit which will output the waveform at right.

Hint: Think differentiation.

e) Assume all of these circuits are built using one LM324 quad opAmp IC (the one you used in the lab). What is the minimum <u>+</u> supplies you should use to power this IC (Integrated Circuit)?

ECE2210 Final given: Fall 14 p2

5


6

time

(ms)

time

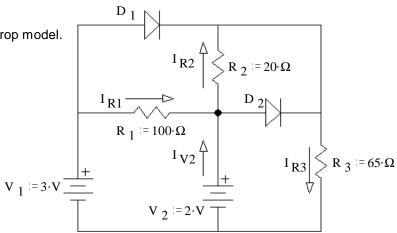
(ms)

- b) Was the transistor actually operating in the active region? yes no circle one yes How do you know? (Specifically show a value which is or is not within a correct range.)
- c) When the switch is open, you would like transistor Q_2 to saturate. What minimum β_2 would be required to achieve saturation?
- d) Unfortunately, you can't find a replacement Q_2 . So $\beta_2 = 25$ Find the maximum value of R_2 , so that transistor Q_2 will be in saturation.

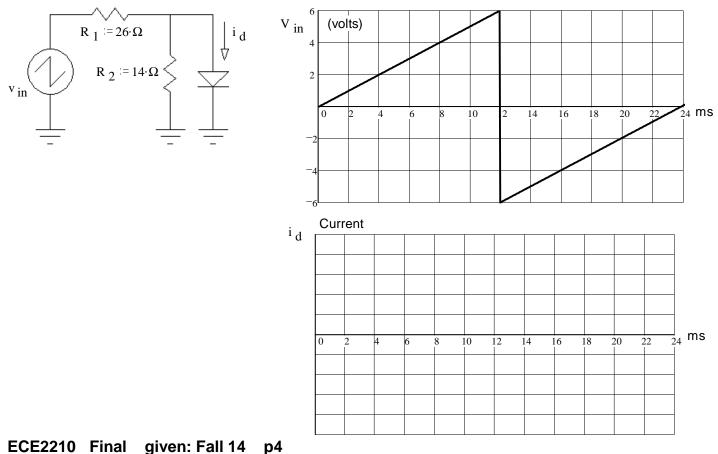
Use this value of R₂ for the remainder of the problem

e) When the switch is closed, you would like transistor Q_1 to saturate. What minimum V_{BB} would be required to achieve saturation? $\beta_1 = 80$

f) The diode in this circuit conducts a significant current:

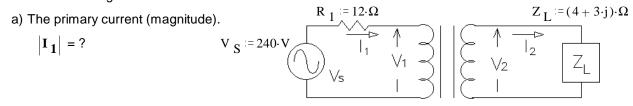

- A) never. B) when the switch opens. C) whenever the switch is open.
 D) when the switch closes. E) whenever the switch is closed. F) always. (circle one)
- g) R_2 is that found in part c). β_1 is that found in part d). The switch is opened and closed a few times. What is the maximum diode current you expect. (Answer 0 if it never conducts.)

ECE2210 Final given: Fall 14 p4


- 8. (20 pts) In the circuit shown, use the constant-voltage-drop model.
 - a) Assume that diode D_1 does NOT conduct. Assume that diode D_2 does conduct.

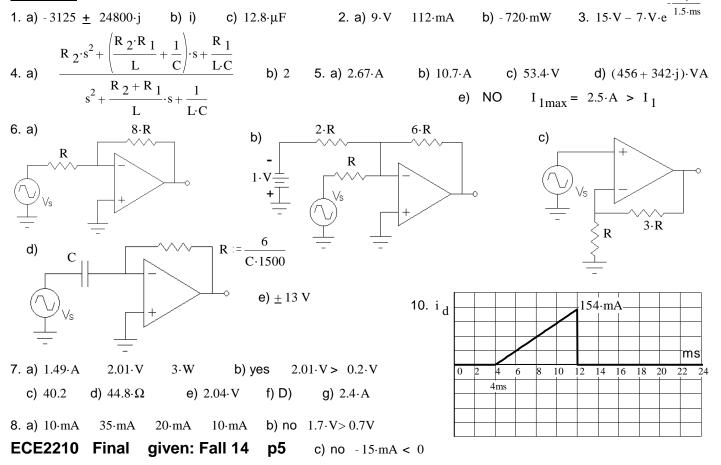
Find $I_{R1},\,I_{R2},\,I_{R3},\,$ $I_{V2}, based on these assumptions. Stick with these assumptions even if your answers come out absurd. Hint: think in nodal voltages.$

 $I_{R1} = ?$ $I_{R2} = ?$ $I_{R3} = ?$ $I_{V2} = ?$



- b) Based on your numbers above, does it look like the assumption about D_1 was correct? yes no How do you know? (Specifically show a value which is or is not within a correct range.) (circle one)
- c) Based on your numbers, does it look like the assumption about D_2 was correct? yes no How do you know? (Specifically show a value which is or is not within a correct range.)
- 10. (16 pts) A voltage waveform is applied to the circuit shown. Accurately draw the diode current waveform (i_d) you expect to see. Label important times **and** current levels.

ECE2210 Final given: Fall 14 p5


5. (20 pts) The transformer shown in the circuit below is ideal. It is rated at 480/120 V, 1.2 kVA, 60 Hz Find the following:

- b) The secondary current (magnitude). $|\mathbf{I}_2| = ?$
- c) The secondary voltage (magnitude). $|\mathbf{V}_2| = ?$
- d) The complex power (P and Q) used by the load. S $_{L}$ = ?
- e) Is this transformer operating within its ratings? Show your evidence.
- 9. Do you want your grade and scores posted on the Internet? If your answer is yes, then provide some sort of alias:

otherwise, leave blank Folder number _____ The grades will be posted on line in pdf form in alphabetical order under the alias that you provide here. I will not post grades under your real name. It will show the homework, lab, and exam scores of everyone who answers here.

Answers

