ECE2210 Final given: Fall 15

1. (12 pts) a) Find the s-type transfer function of the circuit shown.

You MUST show work to get credit. Simplify your expression for **H(s)** so that the denominator is a simple polynomial.

$$\mathbf{H}(s) = ?$$

- b) How many poles does this transfer function have?
- c) How many zeroes does this transfer function have? If it has 1 or more, express them (probably in terms of R_1, R_2, L and C).

2. (18 pts) Find the values below. Show your work.

Find: V_{IS1} V_{IS2} I_{VS} &

 $P_{\,\,V_S}\,$, $\,$ The power V_S supplies to the circuit.

Note: feel free to show work & answers right on the schematic

- 3. (18 pts) For partial credit, you must show work and/or intermediate results.
 - a) Find \mathbf{Z}_2
 - b) Find $\mathbf{V_S}$
 - c) Circle 1: i) I_S leads V₂
 - ii) $I_8 \log V_2$
 - i) \mathbf{I}_{S} leads \mathbf{V}_{2}

Why? Show numbers:

Or explain by other means:

- 4. (22 pts) The switch has been open (not making contact) for a long time and is switched closed (as shown) at time t=0.
 - a) Find the complete expression for $\boldsymbol{i}_L(t).$
 - b) Find i_L at time $t=1.2\tau$.
 - c) At time $t=1.2\tau$ the switch is opened again. Will the time constant be different now? If yes, find the new time constant. JUST the time constant.

ECE2210 Final given: Fall 15 p1

ECE2210 Final given: Fall 15 p2

5. (7 pts) A transformer is rated at 240V/120V, 1.2kVA. Assume the transformer is ideal and all voltages and currents are RMS.

How much power does the load consume?

- 6. (16 pts) The transformer shown in the circuit below is ideal. It is rated at 240/48 V, 20 VA, 60 Hz Find the following:

 All values are RMS unless specified otherwise.
 - a) $I_1 = ?$
 - b) $V_2 = ?$
 - c) $I_2 = ?$

Use constant-voltage-drop models for the diodes and LEDs on this exam.

- 7. (18 pts) Assume that diode D_1 does conduct. Assume that diode D_2 does NOT conduct.
 - a) Find I_{R1} , I_{R2} , I_{R3} , & I_{D1} based on these assumptions. Stick with these assumptions even if your answers come out absurd.

(circle one)

- b) Was the assumption about D_1 correct? yes no How do you know? (Specifically show a value which is or is not within a correct range.)
- c) Was the assumption about \mathbf{D}_2 correct? yes no How do you know?

8. (28 pts) The same input signal (at right) is connected to several op-amp circuits below. Sketch the output waveform for each circuit. Clearly label important voltage levels on each output. If I can't easily make out what your peak values are, I'll assume you don't know. Don't forget to show inversions. The op-amp is connected to +12V & -12V power supplies.

ECE2210 Final given: Fall 15 p2

ECE2210 Final given: Fall 15 p3
8. continued, the input is repeated at right. The op-amp is connected to +12V & -12V power supplies.

ECE2210 Final given: Fall 15 р3

ECE2210 Final given: Fall 15

- 9. (24 pts) A transistor is used to control the current flow through an inductive load (in the dotted box, it could be a relay coil or a DC motor).
 - a) $\beta = 20$ Assume the switch has been open for a long time and the transistor is in the active region, find I_L , and V_{CE} and P_O .

$$I_L = ?$$

 $V_{CE} = ?$

$$P_Q = ?$$

 $_{O}V_{CC} = 6 \cdot V$

b) Was the transistor actually operating in the active region? yes no circle one

How do you know?

(Specifically show a value which is or is not within a correct range.)

- c) What minimum β would be required to achieve saturation?
- d) You can't change the β . Find the maximum value of R_1 , so that the transistor will be in saturation. $\beta = 20$
- e) The diode in this circuit conducts a significant current:
 - A) never.

- C) whenever the switch is open.
- E) whenever the switch is closed.

- B) when the switch opens.
- D) when the switch closes.
- F) always.
- f) R_1 , is that found in part d). The switch is opened and closed a few times.

What is the maximum diode current you expect. (Answer 0 if it never conducts.)

10. Do you want your grade and scores posted on the Internet? If your answer is yes, then provide some sort of alias:

otherwise, leave blank

The grades will be posted on line in pdf form in alphabetical order under the alias that you provide here. I will not post grades under your real name or an alias that looks like a real name or u-number. The pdf spreadsheet will show the homework, lab, and exam scores of everyone who answers here.

11. (17 pts) A voltage waveform (dotted line) is applied to the circuit shown. Accurately draw the output waveform (v_o) you expect to see. Label important times and voltage levels.

 $R := 20 \cdot \Omega$

 v_{0} 10 (volts) 12 18 ms

ECE2210 Final given: Fall 15

Answers

1. a)
$$\frac{\frac{1}{C \cdot s}}{s^2 + \frac{1}{C \cdot R_2} \cdot s + \frac{1}{C \cdot L}}$$
 b) 2 c) 1 $s = 0$

- 2. $10 \cdot V$ $6 \cdot V$ $-70 \cdot mA$ $-210 \cdot mW$
- 3. a) $187.5\Omega / -68.78^{\circ}$ b) $1.62V / -8.93^{\circ}$
 - c) i) $\pm 38.6^{\circ} < -30^{\circ}$
- 4. a) $240 \cdot mA 160 \cdot mA \cdot e^{-\frac{t}{0.113 \cdot ms}}$ b) $192 \cdot mA$ c) $60 \cdot \mu s$
- 5. $360 \cdot W$ 6. a) $200 \cdot mA$ b) $16 \cdot V$ c) $1 \cdot A$
- 7. a) 20·mA 5·mA 50·mA 35·mA
 - b) yes $35 \cdot mA > 0$ c) yes $V_{D2} = 0.3 \cdot V < 0.7V$
- 9. a) 424·mA 1.76·V 0.746·W
 - b) yes $1.76 \cdot V > 0.2 \cdot V$
 - c) 27.4 d) $183 \cdot \Omega$ e) D) f) $580 \cdot mA$

