ECE2210 Final given: Fall 17

1. (18 pts) a) Find the s-type transfer function of the circuit shown. Consider $\mathbf{I}_{\text {in }}$ as the input and \mathbf{I}_{L} as the "output".
You MUST show work to get credit. Simplify your expression for $\mathrm{H}(\mathrm{s})$ so that the denominator is a simple polynomial with no coefficient before the highest-order s term in the denominator.

$$
\mathbf{H}(\mathrm{s})=\text { ? }
$$

b) How many zeroes does this transfer function have?
c) How many poles does this transfer function have?
2. (25 pts)
a) Find \mathbf{Z}_{2}

b) Find $\mathbf{Z}_{\mathbf{1}}$ in polar form.
c) Circle the best, most comprehensive answer:
i) \mathbf{Z}_{1} must contain a capacitor
ii) \mathbf{Z}_{1} must contain a resistor and a capacitor
iii) $\mathbf{Z}_{\mathbf{1}}$ must contain an inductor
iv) $\mathbf{Z}_{\mathbf{1}}$ must contain a resistor and an inductor

ECE2210 Final given: Fall 17 p2

3. (36 pts) A couple of transistors are used to control the current flow through an inductive load. The switch has been closed, as shown, for a long time.
a) You measure the voltage at each collector (referenced to ground) as shown on the drawing. Find the power dissipated by transistor Q_{2}.
b) Find the β of transistor Q_{2}.

c) Find the β of transistor Q_{1}.
d) Find the minimum β for transistor Q_{1} to be in saturation. $\quad \beta_{1 \mathrm{~min}}=$?

You replace Q_{1} with a different transistor so that now: $\quad \beta_{1}:=200 \quad$ Use this from now on.
e) Find the new load current $\left(\mathrm{I}_{\mathrm{L}}\right)$ assuming transistor Q_{2} is in the active region.
f) Check the assumption that Q_{2} is in the active region and recaculate I_{L} if necessary.
g) The diode in this circuit conducts a significant current: (circle one)
A) never.
C) whenever the switch is closed.
E) when the switch opens.
B) when the switch closes.
D) always.
F) whenever the switch is open.
h) What is the maximum diode current you expect when the switch is cycled. (Answer 0 if it never conducts.)

ECE2210 Final given: Fall 17 p3

4. (36 pts) You have two input voltages to work with. A 1 V battery and the waveform (at right).

The problems below are op-amp design problems. The answer should be a schematic of a circuit showing the values of all the parts. Use reasonable resistor values (in the 100Ω to $1 \mathrm{M} \Omega$ range). Also show how one or both of the sources are hooked up to your circuit. Most circuits won't need both.
a) Design a circuit which will output the waveform at right.
b) Design a circuit which will output the waveform at right.
c) Design a circuit which will output the waveform at right.
d) Design a circuit which will output the waveform at right. Hint: Think of a mathmatical operation.

time
(ms)

time (ms)

time
(ms)
e) To make ALL of these circuits work, what minimum power supplies would you need for the op amps?

ECE2210 Final given: Fall 17

ECE2210 Final given: Fall 17 p4

5. (26 pts) L, R, \& C together are the load in the circuit shown. The RMS voltmeter measures 220 V , the RMS ammeter measures 4.8 A , and the wattmeter measures 720 W . Find the following: Be sure to show the correct units for each value.
a) The value of the load resistor. $R=$?

b) The apparent power. $|\mathbf{S}|=$?
c) The magnitude of the reactive power. $|\mathrm{Q}|=$? (sign unknown)
d) The impedance of the capacitor. $\quad \mathbf{Z}_{\mathbf{C}}=$?
e) The complex power. $\mathbf{S}=$?
f) The power factor. $\mathrm{pf}=$?
g) The power factor is: i) leading ii) lagging (circle one)
h) The two components of the load are in a box which cannot be opened. Add (draw it) another component to the circuit above which can correct the power factor (make pf = 1). Show the correct component in the correct place and find its value here or on next page. This component should not affect the real power consumption of the load.
6. (21 pts) A transformer is rated at $1000 \mathrm{~V} / 200 \mathrm{~V}$, 1 kVA . Assume the transformer is ideal and all voltages and currents are RMS.
a) The the source voltage, $\mathbf{V}_{\mathbf{S}}:=600 \cdot \mathrm{~V} \underline{/ \underline{0}^{\circ}}$

Find the voltage across the load $\left(\left|\mathbf{V}_{2}\right|\right)$?

b) The secondary load draws 720 VA of apparent power at a power factor of 82%, leading. Find the secondary load, $\mathbf{Z}_{\mathbf{L}}$ (magnitude and angle).
c) Find the primary current, $\mathbf{I}_{\mathbf{1}}$ (magnitude and angle).
d) How much average power does the load dissipate?
e) How much average power does the power source $\left(\mathbf{V}_{\mathbf{S}}\right)$ supply?
h) Is this transformer operating within its ratings?

How do you know? (Specifically show enough values in correct range or one that is not.)

Do you want your grade and scores posted on the Internet?
If your answer is yes, then provide some sort of alias:
The grades will be posted on line in pdf form in alphabetical order under the alias that you provide here. I will not post grades under your real name or an alias that looks like a real name or u-number. The pdf spreadsheet will show the homework, lab, and exam scores of everyone who answers here.

ECE2210 Final given: Fall 17 p6

 7. (18 pts) A voltage waveform is applied to the circuit shown. Accurately draw the R_{2} current waveform (i_{2}) that you expect to see. Label important times and current levels.

Answers

$$
\frac{1}{\mathrm{~L} \cdot \mathrm{C}}
$$

1.

$\mathrm{s}^{2}+\left(\frac{1}{\mathrm{R}_{2} \cdot \mathrm{C}}+\frac{\mathrm{R}_{3}}{\mathrm{~L}}\right) \cdot \mathrm{s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}} \cdot\left(\frac{\mathrm{R}_{3}}{\mathrm{R}_{2}}+1\right)$
2. a) $300 \cdot \Omega \cdot e^{j \cdot 22 \cdot \operatorname{deg}}=278.155+112.382 \mathrm{j} \cdot \Omega$
$\begin{array}{ll}\text { b) } 108.3 \Omega /-64.6^{\circ} & \text { c) ii) }\end{array}$
3. a) $4.5 \cdot \mathrm{~W}$
b) 28.3
c) 63.9
d) 97.6
e) $2.29 \cdot \mathrm{~A}$
f) $2.2 \cdot \mathrm{~A}$
g) E)
h) $2.2 \cdot \mathrm{~A}$
4. a) inverting amp with $R_{f}=12 R_{1}$
b) summer with $R_{f}=9 R_{1}$, waveform is hooked to $R_{1} . R_{f}=3 R_{2}$, battery + terminal is hooked to R_{2} and - to ground
c) non-inverting amp with $R_{f}=5 R_{1}$
d) differentiator with $\mathrm{R}_{\mathrm{f}}=6 \mathrm{~V} /(\mathrm{C}(1000 \mathrm{~V} / \mathrm{s}))$, if $\mathrm{C}=1 \mu \mathrm{~F}$ then $\mathrm{R}_{\mathrm{f}}=6 \mathrm{k} \Omega$
e) $\pm 13 \mathrm{~V}$
5. a) $31.25 \cdot \Omega$
b) $1056 \cdot \mathrm{VA}$
c) $772.5 \cdot \mathrm{VAR}$
d) $-53.53 \cdot \mathrm{j} \cdot \Omega$
e) $(720-772.5 \cdot \mathrm{j}) \cdot V A$
g) i)
h) Add an second $166-\mathrm{mH}$ inductor in parallel with load
6. a) $120 \cdot \mathrm{~V}$
b) $20 \Omega /-34.9^{\circ}$
c) $1.2 \mathrm{~A} / 34.9^{\circ}$
d) $590.4 \cdot \mathrm{~W}$
e) $590.4 \cdot \mathrm{~W}$
h) $\left|\mathbf{I}_{2}\right|=6 \cdot \mathrm{~A}>\frac{1 \cdot \mathrm{kVA}}{200 \cdot \mathrm{~V}}=5 \cdot \mathrm{~A} \mathrm{NO}$

