This is the only reference material allowed at the final. Bring this page to the Final. You may add whatever you want to this page.
$\mathrm{C}=\frac{\mathrm{Q}}{\mathrm{V}} \quad$ farad $=\frac{\text { coul }}{\text { volt }}=\frac{\mathrm{amp} \cdot \mathrm{sec}}{\text { volt }} \quad{ }^{\mathrm{v}} \mathrm{C}=\frac{1}{\mathrm{C}} \cdot \int_{-\infty}^{\mathrm{t}} \quad{ }^{\mathrm{i}} \mathrm{C} \mathrm{dt}=\frac{1}{\mathrm{C}} \cdot \int_{0}^{\mathrm{t}} \quad{ }^{\mathrm{i}} \mathrm{C} \mathrm{dt}^{\mathrm{d}+\mathrm{v}_{\mathrm{C}}(0)} \quad$ initial voltage $\quad{ }^{\mathrm{i}} \mathrm{C}=\mathrm{C} \cdot \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{v}_{\mathrm{v}}$

$$
\text { parallel: } \mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots
$$

$\mathrm{W}_{\mathrm{C}}=\frac{1}{2} \cdot \mathrm{C} \cdot \mathrm{V}_{\mathrm{C}}{ }^{2}$
Capacitor voltage cannot change instantaneously
henry $=\frac{\mathrm{volt} \cdot \mathrm{sec}}{\mathrm{amp}}$
${ }^{\mathrm{i}} \mathrm{L}_{\mathrm{L}}=\frac{1}{\mathrm{~L}} \cdot \int_{-\infty}^{\mathrm{t}} \quad \mathrm{v}_{\mathrm{L}} \mathrm{dt}=\frac{1}{\mathrm{~L}} \cdot \int_{0}^{\mathrm{t}} \quad \mathrm{v}_{\mathrm{L}} \mathrm{dt}+\mathrm{i}_{\mathrm{L}}(0)$
series:
eously
ial current
$\mathrm{W}_{\mathrm{L}}=\frac{1}{2} \cdot \mathrm{~L} \mathrm{\cdot} \cdot{ }_{\mathrm{L}}{ }^{2} \quad$ Inductor current cannot change instantaneously
For all first order transients: $\quad \mathrm{x}(\mathrm{t})=\mathrm{x}(\infty)+(\mathrm{x}(0)-\mathrm{x}(\infty)) \cdot \mathrm{e}^{-\frac{\mathrm{t}}{\tau}} \quad \tau=\mathrm{R}_{\mathrm{Th}} \mathrm{C}$ OR $\frac{\mathrm{L}}{\mathrm{R}_{\mathrm{Th}}}$
Resonance:

Steady-state sinusoidal AC Impedances: $\quad \mathbf{Z}_{\mathbf{C}}=\frac{1}{\mathrm{j} \cdot \omega \cdot \mathrm{C}}=\frac{-\mathrm{j}}{\omega \cdot \mathrm{C}}$
Bode Plots Poles come from denominator of transfer function,
zeroes from numerator.
$\mathbf{Z}_{\mathbf{L}}=\mathrm{j} \cdot \omega \cdot \mathrm{L}$
$\omega_{\mathrm{o}}=\frac{1}{\sqrt{\mathrm{~L}_{\mathrm{eq}} \cdot \mathrm{C}_{\mathrm{eq}}}}$

Slopes: - 20,0 , or $+20 \mathrm{~dB} /$ decade dB is $20 \cdot \log _{10}(|\mathbf{H}(\omega)|)$

Second order transients
 $\begin{array}{ll}\text { Second order transients } \\ \text { LaPlace Impedances: } & \mathbf{Z}_{\mathbf{C}}=\frac{1}{\mathrm{C} \cdot \mathrm{s}} \quad \mathbf{Z}_{\mathbf{L}}=\mathrm{L} \cdot \mathrm{s} \quad \mathbf{H}(\mathrm{s})=\frac{\text { output }}{\text { input }}\end{array}$

Overdamped $\quad b^{2}-4 \cdot k>0 \quad s_{1}$ and s_{2} are real and negative
$\mathrm{X}(\mathrm{t})=\mathrm{X}(\infty)+\mathrm{B} \cdot \mathrm{e}^{\mathrm{s}^{1 \cdot t}}+\mathrm{D} \cdot \mathrm{e}^{\mathrm{s} 2 \cdot \mathrm{t}} \quad \mathrm{X}(0)=\mathrm{X}(\infty)+\mathrm{B}+\mathrm{D} \quad \quad \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{X}(0)=\mathrm{B} \cdot \mathrm{s}_{1}+\mathrm{D} \cdot \mathrm{s}_{2}$
Critically damped $b^{2}-4 \cdot k=0 \quad s_{1}=s_{2}=-\frac{b}{2}=s \quad s_{1}$ and s_{2} are real, equal and negative

$$
\begin{aligned}
& X(t)=X(\infty)+B \cdot e^{s \cdot t}+D \cdot t \cdot e^{s \cdot t} \\
& \mathrm{~B}=\mathrm{X}(0)-\mathrm{X}(\infty) \\
& \mathrm{D}=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{X}(0)-\mathrm{B} \cdot \mathrm{~s} \\
& \left\lvert\, \frac{\mathrm{d}_{\mathrm{d}}}{\mathrm{dt}} \mathrm{i}(0)=\frac{{ }^{\mathrm{v}} \mathrm{~L}^{(0)}}{\mathrm{L}}\right. \\
& \text { Underdamped } \mathrm{b}^{2}-4 \cdot \mathrm{k}<0 \quad \mathrm{~s}=\alpha \pm \mathrm{j} \omega \quad \text { complex } \mathrm{s}_{1} \text { and } \mathrm{s}_{2} \\
& X(t)=X(\infty)+e^{\alpha \cdot t} \cdot(B \cdot \cos (\omega \cdot t)+D \cdot \sin (\omega \cdot t)) \quad B=X(0)-X(\infty) \\
& D=\frac{\frac{d}{d t} X(0)-B \cdot \alpha}{\omega} \\
& \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{v}^{2}(0)=\frac{\mathrm{i} \mathrm{C}^{(0)}}{\mathrm{C}}
\end{aligned}
$$

AC Power $\quad \mathrm{V}_{\text {RMS }}=\frac{\mathrm{v}_{\mathrm{p}}}{\sqrt{2}} \cap \quad \underline{\text { All voltages and current below are } \mathrm{RMS}} \quad \operatorname{pf}=\cos (\theta)=\frac{\mathrm{P}}{|\mathbf{S}|}$
$\mathrm{P}=\left(\left|\mathbf{I}_{\mathbf{R}}\right|\right)^{2} \cdot \mathrm{R}=\frac{\left(\left|\mathbf{V}_{\mathbf{R}}\right|\right)^{2}}{\mathrm{R}}$ for resistors or $\begin{aligned} \mathrm{P} & =|\mathbf{V}| \cdot|\mathbf{I}| \cdot \cos (\theta) \\ & =|\mathbf{S}| \cdot \mathrm{pf}\end{aligned}$
capacitors ->-Q $\quad \mathrm{Q}_{\mathrm{C}}=\left(\left|\mathbf{I}_{\mathbf{C}}\right|\right)^{2} \cdot \mathrm{X}_{\mathrm{C}}=\frac{\left(\left|\mathbf{v}_{\mathbf{C}}\right|\right)^{2}}{\mathrm{X}_{\mathrm{C}}} \quad \mathrm{X}_{\mathrm{C}}=-\frac{1}{\omega \cdot \mathrm{C}} \quad \begin{gathered}\text { and is a negative number } \\ \text { causes leading } \mathrm{pf}\end{gathered}$
inductors -> + Q $\quad \mathrm{Q}_{\mathrm{L}}=\left(\left|\mathbf{I}_{\mathbf{L}}\right|\right)^{2} \cdot \mathrm{X}_{\mathrm{L}}=\frac{\left(\left|\mathbf{v}_{\mathbf{L}}\right|\right)^{2}}{\mathrm{X}_{\mathrm{L}}} \quad \mathrm{X}_{\mathrm{L}}=\omega \cdot \mathrm{L}$ and is a positive number causes lagging pf or $\mathrm{Q}=$ Reactive "power" $=|\mathbf{V}| \cdot|\mathbf{I}| \cdot \sin (\theta)$ units: VAR, kVAR, etc. "volt-amp-reactive"
$\mathbf{S}=$ Complex "power" $=\mathbf{V} \cdot \frac{1}{\mathbf{I}}^{\text {complex congugate }}=\mathrm{P}+\mathrm{jQ}=|\mathbf{V}||\mathbf{I}| \underline{\theta}=|\mathbf{S}| \underline{\theta}$
units: VA, kVA, etc. "volt-amp"
$\mathrm{S}=$ Apparent "power" $=|\mathbf{S}|=|\mathbf{V}| \cdot|\mathbf{I}|=\sqrt{\mathrm{P}^{2}+\mathrm{Q}^{2}} \quad$ Transformer: $\quad \frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}} \quad \mathbf{Z}_{\mathbf{e q}}=\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)^{2} \cdot \mathbf{Z}_{\mathbf{2}}$

System Block Diagrams

$\rightarrow \mathbf{A}(\mathrm{s}) \rightarrow \mathbf{B}(\mathrm{s}) \rightarrow^{\mathbf{A}(\mathrm{s}) \cdot \mathbf{B}(\mathrm{s})}$

$$
\begin{aligned}
& { }^{v_{B E}}={ }^{v}{ }_{B}-{ }^{v} E \\
& { }^{v_{C E}}={ }^{v_{C}}-v^{2}
\end{aligned}
$$

Modes or regions of operation (v_{BE} and v_{CE} are approximate)
Cutoff (off)
$\mathrm{v}_{\mathrm{BE}}<0.7 \mathrm{~V}$
$\mathrm{i}_{\mathrm{B}}=0$
$\mathrm{i}_{\mathrm{C}}=0$

Transistors
PNP

Replace $v_{B E}$ with $v_{E B}$ and
$v_{C E}$ with $v_{E C}$ in equations below

Active (partially on)
$\mathrm{v}_{\mathrm{BE}} \simeq 0.7 \mathrm{~V}$
$\mathrm{i}_{\mathrm{B}}>0$
$\mathrm{v}_{\mathrm{CE}} \geq 0.2 \mathrm{~V}$
$\mathrm{i}_{\mathrm{C}}=\beta \mathrm{i}_{\mathrm{B}}=\alpha \mathrm{i}_{\mathrm{E}} \quad \alpha \simeq 1$
controlled by the transistor
Saturation (fully on)
$\mathrm{v}_{\mathrm{BE}} \simeq 0.7 \mathrm{~V}$
$\mathrm{i}_{\mathrm{B}}>0$
$\mathrm{v}_{\mathrm{CE}} \simeq 0.2 \mathrm{~V}$
$\mathrm{i}_{\mathrm{C}}<\beta \mathrm{i}_{\mathrm{B}}$ limited by something outside of the transistor
$\left.\underset{0.7 \mathrm{~V}}{+\mathrm{H} \|}\right|_{-} ^{\circ} \quad-$
current
$\mathrm{V}_{\mathrm{d}}<0.7 \mathrm{~V}$ Check
LEAs: 2V

Op-amps

Shmitt Trigger

