EE1050 Final given: Spring 01

1. (20 pts) The following questions are similar to what you might see on the FE exam. You don't have to show your work here, in fact use scratch paper if you need more room.
a) Find I_{1} in amps.
(A) 3
(B) 4.2
(C) 12
(D) 15
(E) 20.6

b) What is the average power dissipated by an electric heater with a resistance of 50Ω and drawing a current of $20 \sin (30 t) \mathrm{A}$?
(A) 4 kW
(B) 10 kW
(C) 14.14 kW
(D) 20 kW
(E) 50 kW
c) What is the correct phasor (polar) expression for the effective current in the graph shown?
(A) $35 \underline{/-90}{ }^{\circ} \mathrm{A}$
(B) $35 / 90^{\circ} \mathrm{A}$
(C) $35 \underline{\boxed{270}}{ }^{\circ} \mathrm{A}$
(D) $50 \underline{/-90^{\circ} \mathrm{A}}$
(E) $50 / 90{ }^{\circ} \mathrm{A}$

Notes: By "effective", they mean RMS.

The phase angle is relative to the voltage.
d) How much power is dissipated by the $1 \mathrm{k} \Omega$ resistor?
(A) 0 W
(B) 0.001 W
(C) 0.1 W
(D) 10 W
(E) 10 MW

e) What is the equivalent impedance when the circuit shown is connected to a 120 V 60 Hz source?
(A) $120 \Omega / 83{ }^{\circ}$
(B) $120 \Omega / 90^{\circ}$
(C) $732 \Omega \underline{l-30^{\circ}}{ }^{\circ}$
(D) $991 \Omega /-5.7^{\circ}$

(E) $1206 \Omega \underline{/-90}{ }^{\circ}$

EE1050 Final given: Spring 01 p2

2. (13 pts) Use the method of superposition to find the current through R_{1}, $\left(I_{R 1}\right)$. Be sure to clearly show and circle your intermediate results.

3. (23 pts)
a) Find and draw the Thévenin equivalent of the circuit shown. The load resistor is R_{L}.
b) Find and draw the Norton equivalent of the same circuit.
c) Find the load voltage using either your Thévenin or Norton equivalent circuit.
d) Find the power dissipated in the load resistor.

4. (18 pts) The switch has been in the open position for a long time and is closed (as shown) at time $t=0$. Find the initial and final conditions and write the full expression for $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$, including all the constants that you find.
When the switch is closed this circuit is very similar to the circuit in problem 3. Use your answers to that problem here if you can.

Don't panic, this is just a first order system.

5. (24 pts)
a) Find $V_{\text {in }}$ in polar form.
b) Find I_{T}.
c) Circle 1 :
i) The source current leads the source voltage
ii) The source voltage leads the source current
d) By how much? I.E. what is the phase angle between the voltage and current?

6. (16 pts)
a) Find the differential equation for v_{R}, the voltage across the resistor.
b) Find the characteristic equation.

EE1050 Final given: Spring 01 p3

7. (22 pts) In the circuit shown, use the 0.7 V -drop model for the silicon diode.
a) Assume that diode D_{1} conducts.

Assume that diode D_{2} does not conduct.
Find $\mathrm{I}_{\mathrm{R} 1}, \mathrm{I}_{\mathrm{R} 2}, \mathrm{~V}_{\mathrm{R} 2}$, and $\mathrm{V}_{\mathrm{R} 3}$ based on these assumptions.
$\mathrm{I}_{\mathrm{R} 1}=$ \qquad
$\mathrm{I}_{\mathrm{R} 2}=$ \qquad
$\mathrm{V}_{\mathrm{R} 2}=$ \qquad
$\mathrm{V}_{\mathrm{R} 3}=$ \qquad

b) Was the assumption about D_{1} correct?
yes no
How do you know?
(circle one)
c) Was the assumption about D_{2} correct?
yes no

How do you know?
(circle one)
d) If you have to make new assumptions based on your answers to b) and c), which of the following need to be recalculated.

$$
\begin{array}{lcc}
\mathrm{I}_{\mathrm{R} 1} & { }^{\mathrm{I}} \mathrm{R} 2 & \mathrm{~V}_{\mathrm{R} 2} \\
\text { (circle any number) }
\end{array} \quad{ }^{\mathrm{V}} \mathrm{~V}_{\mathrm{R} 3}
$$

8. (14 pts) The voltage waveform shown below (dashed line) is applied to the circuit shown at right. On the same graph, accurately draw the output voltage you expect to see across the 35Ω resistor. Use the constant-voltage-drop model for the silicon diode. Label times and voltage levels at all points where your output changes direction.

EE1050 Final given: Spring 01 p4

9. (30 pts) Fill in the blanks in the circuit. You may neglect I_{B} 's effect on I_{E}, but do not neglect it on the base side of the transistor.
b) Is the transistor operating in the active region?

Yes No
(Circle one)
Show your evidence.
c) What is the value of β of this transistor?
d) If we neglect I_{B} and use the values of R_{1} and R_{2} above to calculate V_{B}, what do you get?
e) Considering only I_{C} and V_{CE}, how much power
 does this transistor dissipate or contribute?
f) If the v_{s} signal were applied at the base, an AC signal would also appear at the collector. How much larger would it be. (Voltage gain).
10. Do you want your grade and scores posted on my door and on the internet?

Yes No
(Circle one)
If your answer is yes, then provide some sort of alias or password: \qquad
The grades will be posted on my door in alphabetical order under the alias that you provide here. I will not post grades under your real name. The internet version will be an excel spreadsheet which you can download. Both will show all your homework, lab, and exam scores.
Answers
1.a) C
b) B
c) A
d) A
e) C
2. $25 \mathrm{~mA}-20 \mathrm{~mA}=5 \mathrm{~mA}$

3.a)

$$
\mathrm{R}_{\mathrm{Th}}:=400 \cdot \Omega
$$

b)
$\mathrm{R}_{\mathrm{N}}:=400 \cdot \Omega$
c) 2.4 V

d) 7.2 mW
4) $9 \cdot \mathrm{~mA}+(11 \cdot \mathrm{~mA}) \cdot \mathrm{e}^{\frac{\mathrm{t}}{0.4 \cdot \mathrm{~ms}}}$
5.a) $10 \mathrm{~V} / 36.9^{\circ}$
b) $314 \mathrm{~mA} / 43.0^{\circ}$
c) current leads voltage
d) 6.16°
6.a) $\frac{d^{2}}{d t^{2}} v_{\text {in }}(t)+\frac{1}{L \cdot C} \cdot v_{\text {in }}(t)$
$=\frac{d^{2}}{d t^{2}} v R^{(t)}+\frac{1}{R \cdot C} \cdot \frac{d}{d t} v_{R}(t)+\frac{1}{L \cdot C} \cdot v R^{(t)}$
b) $\mathrm{s}^{2}+\frac{1}{\mathrm{R} \cdot \mathrm{C}} \cdot \mathrm{s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}=0$
7.a) $5 \mathrm{~mA}, 10 \mathrm{~mA}, 1 \mathrm{~V}, 0.3 \mathrm{~V}$
b) yes, $I_{D 1}>0$
c) $\mathrm{no}, \mathrm{V}_{\mathrm{D} 2}>0.7 \mathrm{~V}$
d) all but $\mathrm{I}_{\mathrm{R} 1}$
9.a) $\mathrm{V}_{\mathrm{B}}=2.8 \mathrm{~V}, \mathrm{I}_{\mathrm{R} 1}=1.015 \mathrm{~mA}, \mathrm{I}_{\mathrm{R} 2}=0.933 \mathrm{~mA}$, $R_{2}=3 k \Omega, R_{E}=171 \Omega, V_{C E}=6.15 \mathrm{~V}, R_{C}=630 \Omega$
b) yes, VCE $>0.2 \mathrm{~V}$
c) 150
d) 3 V
e) 75.6 mW
f) 3.69

EE1050 Final
 given: Spring 01

