
ECE2210 Final given: Spring 11

1. (10 pts) Find the resonant frequency (or frequencies) of the circuit shown (in cycles/sec or Hz).

 $\mathbf{Z} =$

 $L = 100 \cdot mH$

= ?

d

 $|\mathbf{I}_{\mathbf{L}}| = 5 \cdot \mathbf{A}$

unknown

phase

- 2. (25 pts) The switch has been closed (making contact) for a long time and is switched open (as shown) at time t = 0.
 - a) Find the complete expression for $\boldsymbol{v}_{C}(t).$
 - b) What is v_C when $t = \tau$? $v_C(\tau) = ?$
 - c) At time $t = \tau$ the switch is closed again. Find the complete expression for $v_C(t')$, where t' starts at $t = \tau$. Be sure to clearly show the time constant.

3. 9 pts) $\mathbf{Z} := |\mathbf{Z}| \cdot e^{j \cdot 40 \cdot deg}$ We don't know its magnitude, but its phase angle is $+40^{\circ}$. $\omega := 3000 \cdot \frac{rad}{sec}$ \mathbf{Z} is made of a 100Ω resistor in series with one other part. What is the part? Give type and value.

4. (24 pts) An inductor is used to completely correct the power factor of a load. Find the following:

a) The power consumed by the load. P_L = ? Hint 1: Since L corrects the power factor, its Q must exactly cancel the load's Q and the source provides only P and no Q.

<u>/ 0</u>° ∖ 60∙Hz

 $\mathbf{V}_{\mathbf{S}} = 120 \cdot \mathbf{V}$

Hint 2: If hint 1 doesn't make sense to you, you don't know AC power well enough to do part a) -- so skip to part b).

If you can't find this power, mark an x here _____ and assume $P_L = 550W$ for the rest of the problem.

- b) The power supplied by the source. $P_S = ?$
- c) The source current (magnitude and phase). I $_{S}$ = ?
- d) The load can be modeled as 2 parts in series. Draw the model and find the values of the parts.
- e) The inductor, L, is replaced with a 50 mH inductor.

i) The **new** source current $|I_S|$ is **greater** than that calculated in part c).

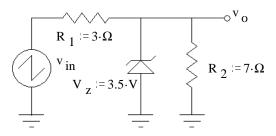
circle ii) The **new** source current $|I_S|$ is **the same** as that calculated in part c).

ECE2210 Final given: Spring 11 p1

iii) The **new** source current $|I_s|$ is **less** than that calculated in part c).

ECE2210 Final given: Spring 11 p2

5. (15 pts) a) Find the s-type transfer function of the circuit shown after time t = 0. Consider I_2 as the "output".


You <u>MUST</u> show work to get credit. Simplify your expression for H(s) so that the denominator is a simple polynomial with no coefficient before the highest-order s term in the denominator.

$$\mathbf{H}(s) = \frac{\mathbf{I}_2(s)}{\mathbf{I}_{in}(s)} = ?$$

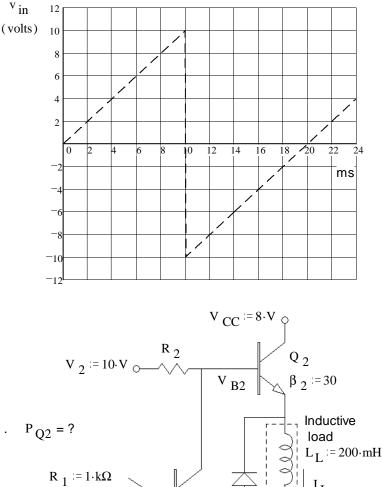
b) How many zeroes does this transfer function have?

If it has 1 or more, express them (probably in terms of R_1, R_2, R_3, L and C).

 (22 pts) A voltage waveform (dotted line) is applied to the circuit shown. <u>Accurately</u> draw the output waveform (v_o) you expect to see. Label important times <u>and</u> voltage levels.

- 7. (31 pts) A couple of transistors are used to control the current flow through an inductive load.
 - a) The switch is open, as shown. What is the maximum R_2 can be if transistor Q_2 is in saturation.
 - $\beta_2 = 30$ R $_2 = ?$
 - b) Find the power dissipated in transistor Q_2 with this R_2 . $P_{O2} = ?$
 - c) When the switch is closed, you would like transistor Q_1 to saturate. What minimum β_1 would be required to achieve saturation? $\beta_{1\min} = ?$

Assume at least this β_1 for the remainder of the problem.


d) What if the voltage V_2 was too low so that the base voltage of transistor Q_2 was only 6V, how much power would be dissipated in transistor Q_2 ?

$$\mathbf{I}_{in}$$

$$\begin{array}{c|c}
 & R_{1} \\
 & R_{2} \\
 & \mathbf{I}_{2} \\
 & R_{3} \\
 & \mathbf{I}_{2} \\
 & \mathbf{I}_{2} \\
 & \mathbf{I}_{2} \\
 & \mathbf{I}_{2} \\
 & \mathbf{I}_{1} \\
 & \mathbf{I}_{2} \\
 & \mathbf{I}_{2} \\
 & \mathbf{I}_{2} \\
 & \mathbf{I}_{1} \\
 & \mathbf{I}_{2} \\
 & \mathbf$$

c) How many poles does this transfer function have?

If it has 1 or more, express them (probably in terms of R_1, R_2, R_3, L and C).

Q 1

 $R_{L} := 4 \cdot \Omega$

IF
$$V_{B2} = 6 \cdot V$$
 $P_{O2} = ?$

 $\frac{1}{1}$ 4.V

e) The transistor Q₂ was selected to be able to handle the power found in part b) (with a 2x factor of safety). What would happen with the V₂ of part d)?

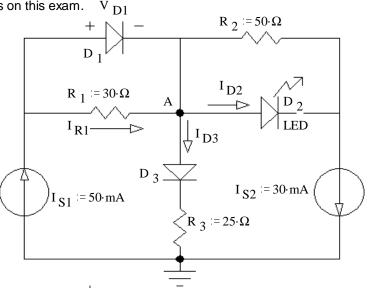
 V_2 is NOT too low for the remainder of the problem, that is, use the original $V_2 = 10 \cdot V$

- f) The diode in this circuit conducts a significant current:
 - A) never.

7. continued

(circle one) D) always.

B) when the switch closes.

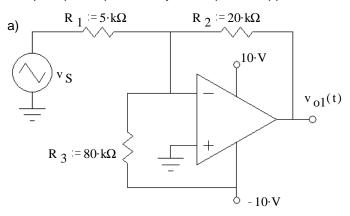

- E) when the switch opens.
- C) whenever the switch is closed. F) whenever the switch is open.
- g) What is the maximum diode current you expect when the switch is cycled. (Answer 0 if it never conducts.)
- h) This circuit design is:
- (circle as many as apply and don't forget to say why)
- A) incredibly fantastic. C) dumb.
- B) a very good design. D) not a good design.

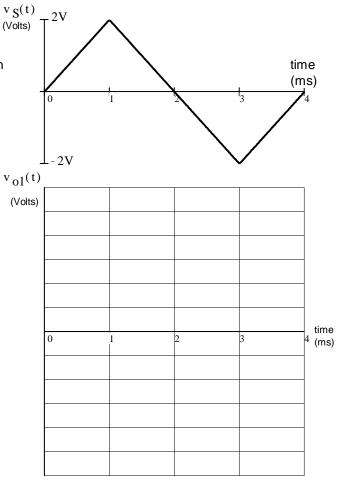
Use constant-voltage-drop models for the diodes and LEDs on this exam. V

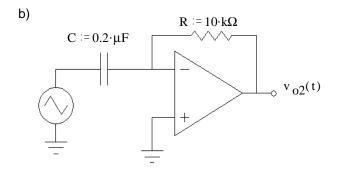
8. (24 pts) Assume that diode D_1 does **NOT** conduct.

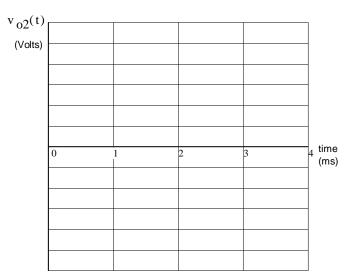
Assume that diodes D_2 and D_3 **DO conduct.**

- a) Stick with these assumptions even if your answers come out absurd.
 Find the following:
 - V_{D1}= _____
 - I_{D2} = _____
 - I_{D3} = _____
 - V_A = _____

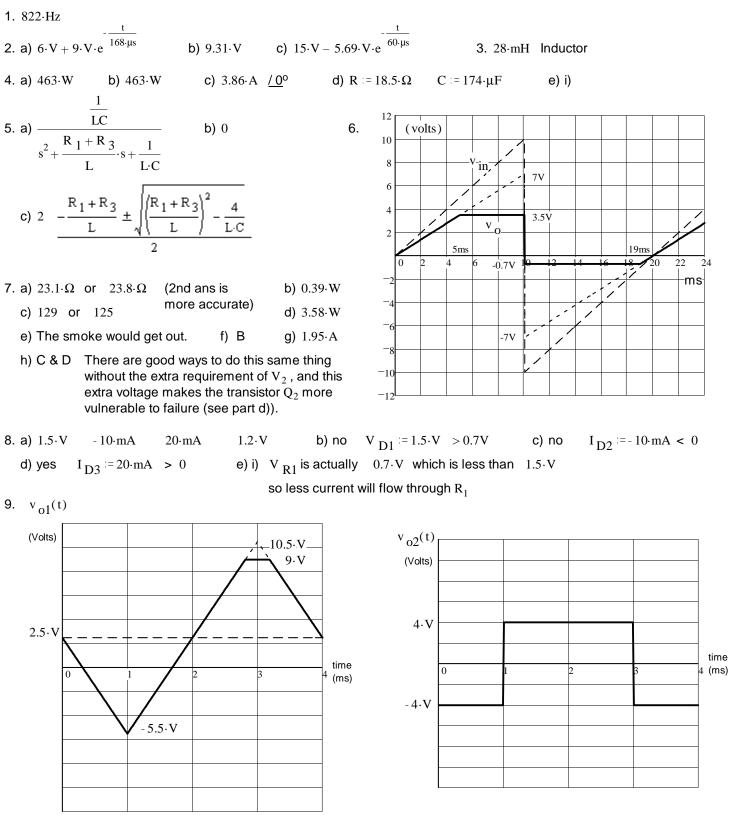

Why?


 b) Based on the numbers above, was the assure How do you know? (Specifically show a value within a correct range.) 	•	1	yes	no	(circle one)
c) Was the assumption about $\rm D_2$ correct? How do you know? (Show a value & range.)	yes	no			
	(circle c	one)			
d) Was the assumption about $\rm D_3$ correct? How do you know? (Show a value & range.)	yes	no			
 e) Based on your answers to parts b), c) & e), Circle one: 		i) The rea	I _{R1}	< 1 _{R1}	calculated in part a.
	(circle c	one) ii) The <i>rea</i>	al I _{R1}	$= I_{R1}$	calculated in part a.
Justify your answer.		iii) The re	al I _{R1}	> I _{R1}	calculated in part a.
ECE2210 Final given: Spring 11	р3				


ECE2210 Final given: Spring 11 p3


ECE2210 Final given: Spring 11 p4

10. (18 pts) The same input signal (at right) is connected to several op-amp circuits below. Sketch the output waveform for each circuit. Clearly label important voltage levels on each output. If I can't easily make out what your peak values are, I'll assume you don't know. Don't forget to show inversions. All op-amps are powered by ± 10 V power supplies.


9. Do you want your grade and scores posted on the Internet? If your answer is yes, then provide some sort of alias.

ECE2210 Final given: Spring 11 p5

otherwise, leave blank

The grades will be posted on line in pdf form in alphabetical order under the alias that you provide here. I will not post grades under your real name. It will show the homework, lab, and exam scores of everyone who answers here.

<u>Answers</u>

