ECE2210 Final given: Spring 14

- b) Find i_L at time $t = 1.2\tau$. $i_L(1.2 \cdot \tau) = ?$
- c) At time $t = 1.2\tau$ the switch is opened again. Find the complete expression for $i_L(t')$, where t' starts at $t = 1.2\tau$. Be sure to clearly show the time constant.
- 4. (20 pts) A transformer is rated at 480V / 120V, 1kVA. Assume the transformer is ideal and all voltages and currents are RMS.
 - a) What is the current rating of the primary?
 - b) What is the current rating of the secondary?
 - c) The secondary has 100 turns of wire. How many turns does the primary have?
 - d) $\mathbf{V}_{\mathbf{L}} := 80 \cdot \mathbf{V}$ How big is the source voltage ($|\mathbf{V}_{\mathbf{S}}|$)?

 $i_{L}(t) \leq$

 $R_3 = 120 \cdot \Omega$

 $L := 2.7 \cdot mH$

$$\begin{vmatrix} \mathbf{Z}_{\mathbf{L}} \end{vmatrix} = 8 \cdot \Omega$$

pf := 75 \cdot % lagging
$$\mathbf{V}_{\mathbf{L}} := 80 \cdot \mathbf{V}$$

t = 0

ECE2210 Final given: Spring 14 p2

- e) The secondary load (Z_L) has a magnitude of 8Ω at a power factor of 75%. Find the secondary current, I_2 (magnitude and <u>angle</u>).
- f) Find the primary current, I₁ (magnitude and <u>angle</u>).
- g) How much average power does the load dissipate? $P_{L} = ?$
- h) How much average power does the power source (V_s) supply? $P_s = ?$
- What is the load as seen by V_S? (magnitude and <u>angle</u>)
- k) Is this transformer operating within its ratings? Show your evidence.
- 5. (20 pts) Assume that diodes D_1 and D_3 DO conduct.

Assume that diode D_2 does NOT conduct.

a) Find I_{R1} , I_{D1} , I_{R2} , & I_{D3} based on these assumptions. Stick with these assumptions even if your answers come out absurd.

- b) Based on the numbers above, was the assumption about D_1 correct? yes no (circle one) How do you know? (Specifically show a value which is or is not within a correct range.)
- c) Was the assumption about D₂ correct? yes no (circle one)

How do you know? (Specifically show a value which is or is not within a correct range.)

d) Was the assumption about D_3 correct? yes no (circle one)

How do you know? (Specifically show a value which is or is not within a correct range.)

6. (18 pts) A voltage waveform (dotted line) is applied to the circuit shown. <u>Accurately</u> draw the output waveform (v_o) you expect to see. Label important times **and** voltage levels.

ECE2210 Final given: Spring 14 p3

7. (23 pts) The same input signal (at right) is connected to several op-amp circuits below. Sketch the output waveform for each circuit. Clearly label important voltage levels on each output. If I can't easily make out what your peak values are, I'll assume you don't know. Don't forget to show inversions. The op-amp is connected to +12V & -12V power supplies.

ECE2210 Final given: Spring 14 p4

- 8. (22 pts) A transistor is used to control the current flow through an inductive load (in the dotted box, it could be a relay coil or a DC motor).
 - a) $\beta := 20$ Assume the switch has been open for a long time and the transistor is in the active region, find I_L, and V_{CE} and P_O.

$$I_{L} = ?$$

$$V_{CE} = ?$$

yes

b) Was the transistor actually operating in the active region? yes no circle one How do you know? (Specifically show a value which is or is not within a correct range.)

- c) What minimum β would be required to achieve saturation?
- d) You can't change the β . Find the maximum value of R₁, so that the transistor will be in saturation. $\beta = 20$

(circle one)

- e) The diode in this circuit conducts a significant current:
 - A) never.
 - B) when the switch opens.
 - C) whenever the switch is open.
 - D) when the switch closes.
 - E) whenever the switch is closed.
 - F) always.

f) R₁, is that found in part d). The switch is opened and closed a few times.

What is the maximum diode current you expect. (Answer 0 if it never conducts.)

- 9. (17 pts) The magnitude of the steady-state, sinusoidal source voltage and the magnitude of the current are shown.
 - a) If the box contained a resistor, what would be its value?
 - b) If the box contained an inductor, what would be its value? L = ?
 - c) If the box contained a capacitor, what would be its value? C = ?
 - d) If the current is leading the voltage, which component is it?
 - R L C (circle one)
 - e) By how many degrees does the current lead?
- 10. Do you want your grade and scores posted on the Internet? If your answer is yes, then provide some sort of alias:

otherwise, leave blank

The grades will be posted on line in pdf form in alphabetical order under the alias that you provide here. I will not post grades under your real name. It will show the homework, lab, and exam scores of everyone who answers here.

 $R := 200 \cdot \Omega$ $V_{S} := 12 \cdot V$ $|I| = \sqrt{2}$ $f := 60 \cdot Hz$ $Q_{S} := 12 \cdot V$ $|I| = \sqrt{2}$

<u>Answers</u>

ECE2210 Final given: Sp 14 p5

