Closed Book, Closed notes except preprinted yellow sheet, Calculators OK. Show all work to receive credit. Circle answers, show units, and round off reasonably

- c) The solutions to the characteristic equation are called the _
- d) Does the transfer function have one or more zeros? If yes, express it (them) in terms of R₁, R₂, C, & L.
- (22 pts) a) Find and draw the Thévenin equivalent of the circuit shown. The load resistor is R_L.

- c) Find the load voltage using your Thévenin equivalent circuit.
- d) Choose a different value of R_L so as to maximize the power dissipated in R_L. Find that maximum power, P_L.

 $I_S = 60 \cdot mA$

of the transfer function.

 $R_2 := 25 \cdot \Omega$

 $R_3 = 35 \cdot \Omega$

 $R_{\rm L} := 30 \cdot \Omega$

 $R_1 := 75 \cdot \Omega$

- (37 pts) A transistor is used to control the current flow through an inductive load (in the dotted box, it could be a relay coil or a DC motor).
 - a) Assume the switch has been open for a long time and you measure the nodal voltage at the collector of Q₂ as shown on the drawing. Find the following:
 - $P_{Q2} = ?$ (The approximate power dissipated by Q_2 . $\beta_2 = ?$

b) When the switch is open, you would like transistor Q_2 to saturate. What minimum β_2 would be required to achieve saturation?

c) You replace Q_2 . So $\beta_2 = 50$ Find $P_{O2} = ?$

d) When the switch is closed, you would like transistor Q_1 to saturate. Find the maximum value of R_1 , so that transistor Q_1 will be in saturation. $\beta_1 = 80$

Use this value of R_1 for the remainder of the problem

e) If the switch is closed for a long time, what voltage should you measure the collector of Q_2 ?

 $V_{C2} = ?$

- f) The diode in this circuit conducts a significant current:
 - A) never.
 - B) when the switch opens.

- (circle one) D) when the switch closes.
- E) whenever the switch is closed.
- C) whenever the switch is open.
- g) R1, is that found in part d). The switch is opened and closed a few times.

What is the maximum diode current you expect. (Answer $0 \mbox{ if it never conducts.})$

h) Transistor Q_1 is bad and $\beta_1 = 40$ The switch is closed for a long time, how much current will flow into the base of Q_2 ?

F) always.

 $I_{B2} = ?$

5. (32 pts) The same input signal (at right) is connected to several op-amp circuits below. Sketch the output waveform for each circuit. Clearly label important voltage levels on each output. If I can't easily make out what your peak values are, I'll assume you don't know. Don't forget to show inversions. All op-amps are powered by ± 12 V power supplies.

ECE 2210 Final given: Spring 16 p3

- 6. (20 pts) A load is made of a resistor and a capacitor. The RMS voltmeter measures 220 V, the wattmeter measures 560 W, and the power factor is 82%. Find the following:
 - a) The reading on the RMS ammeter.

- b) The apparent power. |S| = ?
- c) The reactive power. Q = ?

d) The complex power. S = ?

- e) The power factor is: i) leading ii) lagging (circle one)
- f) The load box cannot be opened. Add (draw it) another component to the circuit above which can correct the power factor (make pf = 1). Show the correct component in the correct place and <u>find its value</u>. This component should not affect the real power consumption of the load.

7. (14 pts) The transformer shown in the circuit below is ideal. It is rated at 120/12 V, 8 VA, 60 Hz Find the following:

Folder number ____

a) $I_1 = ?$ b) $V_2 = ?$

8. (20 pts) A voltage waveform is applied to the circuit shown. Accurately draw the R_2 current waveform (i_{R2}) that you expect to see. Label important times and current levels. (volts)

V in 5

4

<u>Answers</u>

2. a)

9. Do you want your grade and scores posted on the Internet? If your answer is yes, then provide some sort of alias:

otherwise, leave blank

b)

The grades will be posted on line in pdf form in alphabetical order under the alias that you provide here. I will not post grades under your real name or an alias that looks like a real name or u-number. It will show the homework, lab, and exam scores of everyone who answers here.

12

11 ms

11 12

ms

time

4 (ms)

-6V

11V

time

' (ms)

- 11 V

