ECE 2210 Final given Spring 22

1. (18 pts) a) Find the s-type transfer function of the circuit shown. Consider I_{in} as the input and I_L as the "output".

You <u>MUST</u> show work to get credit. Simplify your expression for H(s) so that the denominator is a simple polynomial with no coefficient before the highest-order s term in the denominator.

H(s) = ?

b) How many zeroes does this transfer function have?

c) How many poles does this transfer function have?

2. (18 pts) Z_{eq} is the total impedance between the two terminals. Find Z_{eq} in polar form (give me numbers). You must show work and/or intermediate results.

 $f := 12 \cdot kHz$

$$z_{eq} = \underline{\qquad} / \underline{\qquad}^{\circ}$$

Polar Form

3. (22 pts) To get partial credit, show each step and each answer along the way.

a) Find, \mathbf{I}_2 in polar form.

b) Find I₁

c) Find I_S

 d) Circle 1:
 i) I₁ leads I₂
 ii) I₁ lags I₂

 Why? Show numbers:
 > _____ > ____
 < _____</td>

 Or explain by other means:
 > ______
 < ______</td>

e) If you wanted to build \mathbf{Z}_1 in the simplest way, what parts would you need?

ECE 2210 Final given: Spring 22 p3

- 4. (32 pts) A couple of transistors are used to control the current flow through an inductive load.
 - a) The switch has been closed for a long time. You measure the voltage at the collector of Q_2 to be the value shown (referenced to ground). Find the power dissipated in transistor Q_2 .

$$P_{Q2} = ?$$

b) Q_1 is in saturation, what is the value of R_2 ?

You may assume that the emitter current of Q_1 is approximately equal to the collector current of Q_1 .

 $R_2 = ?$

4, Continued c) Determine if Q_1 actually is saturated. Show how you find this.

Is Q_1 actually saturated? Circle one: yes no d) Find the minimum value β_2 so that Q_2 will be in saturation. $\beta_{2min} = ?$

e) Find the power dissipated in transistor Q_2 with the β you just calculated (Q_2 in saturation). P $_{Q2}$ = ?

f) The diode in this circuit conducts a significant current: (cir

- A) never.
- B) when the switch first closes.
- C) whenever the switch is closed.

- (circle one)
 - D) always.
 - E) when the switch first opens.
- F) whenever the switch is open.
- g) What is the maximum diode current you expect when the switch is cycled. (Answer 0 if it never conducts.) Assume the β_2 of part d (Q_2 in saturation when on).

5. (32 pts) The same input signal (at right) is connected to several op-amp circuits. Sketch the output waveforms for a) and b). Clearly label important voltage levels on the output. If I can't easily make out what your peak values are, I'll assume you don't know. The op-amps are powered by ± 10 V power supplies.

c) The op-amps are powered by \pm 10 V power supplies. What output do you expect? SHOW WORK No waveform sketch required.

6. (22 pts) A load draws 10kVA at 0.75 pf, lagging when hooked to 480V. A capacitor is hooked in parallel with the load and the power factor is corrected to 0.92, lagging. Find the reactive power (VAR) of the capacitor.

Draw a phasor diagram as part of the solution and label all the powers. Be sure to use correct signs & units for each value.

Note: If you can't find the reactive power (VAR) of the capacitor, mark an X : _____ and use -2500VAR for part b). b) Find the value of the capacitor assuming f = 60Hz.

7. (18)The transformer shown in the circuit below is ideal. It is rated at 220/55 V, 100 VA, 60 Hz Find the following:

b) $V_2 = ?$

c) $I_2 = ?$

d) Is this transformer operating within its ratings? Show your evidence.

ECE 2210 Final given: Spring 22 p9

8. (18 pts) A voltage waveform (dotted line) is applied to the circuit shown. Accurately draw the output waveform (v_o) you expect to see. Label important times **and** voltage levels.

