Name \qquad

1. A 10 -microfarad capacitor has been charged to a potential of 150 volts. A resistor of 25Ω is then connected across the capacitor through a switch. When the switch has been closed for 10 time constants the total energy dissipated by the resistor is most nearly (An FE style problem)
(A) 1.0×10^{-7} joules
(B) 1.1×10^{-1} joules
(C) 9.0×10^{1} joules
(D) 1.1×10^{3} joules
(E) 9.0×10^{3} joules
2. a) The switch is closed at time $t=0$ and $v_{C}(0)=0 V$, find $v_{C}(t)$.

b) What is the value of the voltage across C at $t:=40 \cdot \mu \mathrm{~s}$
3. In the circuit shown, the switch has been in the upper position for a long time and is switched down at time $\mathrm{t}=0$. a) Find the initial and final capacitor voltages.

$$
{ }^{v_{C}}(0)=? \quad v_{C}(\infty)=?
$$

b) Find the time constant.
(after $\mathrm{t}=0$)
d) At what time is $\mathrm{v}_{\mathrm{C}}=5 \mathrm{~V}$?
4. a) What will be the final value of $\mathrm{v}_{\mathrm{C}} ? \quad \mathrm{v}_{\mathrm{C}}(\infty)=$? Hint: Use a Thevenin equivalent circuit.

b) What is the time constant of this circuit?
c) Find $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$. The switch had been open for a long time before $\mathrm{t}=0$.

Answers

b) $3.4 \cdot \mathrm{~V}$
3. a) $10 \cdot \mathrm{~V} \quad 4 \cdot \mathrm{~V}$
b) $5.28 \cdot \mathrm{~ms}$
C) $4 \cdot \mathrm{~V}+6 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{5.28 \cdot \mathrm{~ms}}}$
d) $9.46 \cdot \mathrm{~ms}$
4. a) $4 \cdot V$
b) $6.97 \cdot \mathrm{~ms}$
c) $4 \cdot \mathrm{~V}-4 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{6.97 \cdot \mathrm{~ms}}}$
6.a) $\tau=\mathrm{R} \cdot \frac{1}{\left(\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}\right)}$
b) $i(t)=45 \cdot \mathrm{~mA} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{3.2 \cdot \mathrm{~ms}}}$
5. a) $36 \cdot \mathrm{~V}-20 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{138 \cdot \mu \mathrm{~s}}}$
b) $27 \cdot \mathrm{~V}$
c) $16 \cdot \mathrm{~V}+11 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{\mathrm{t}^{\prime}}{78 \cdot \mu \mathrm{~s}}}$
c) $12 \cdot \mathrm{~V}-12 \cdot \mathrm{~V} \cdot \mathrm{e}^{-\frac{\mathrm{t}}{3.2 \cdot \mathrm{~ms}}}$
d) $1.3 \cdot \mathrm{~mJ}$ dissipated in resistor

1stTr1 p2
5. The switch has been closed for a long time and is opened (as shown) at time $\mathrm{t}=0$.
a) Find the initial and final conditions and write the full expression for $\mathrm{v}_{\mathrm{C}}(\mathrm{t})$, including all the constants that you find.

b) What is v_{C} when $\mathrm{t}=0.8 \tau$? $\quad{ }^{\mathrm{v}} \mathrm{C}(0.8 \cdot \tau)=$?
c) At time $t=0.8 \tau$ the switch is closed again. Find the complete expression for $\mathrm{v}_{\mathrm{C}}\left(\mathrm{t}^{\prime}\right)$, where t^{\prime} starts when the switch closes. Be sure to clearly show the time constant.
6. In a circuit with two capacitors, the left capacitor $\left(\mathrm{C}_{1}\right)$ has an initial charge and the right capacitor $\left(\mathrm{C}_{2}\right)$ does not. When the switch is closed at time $t=0$, current $i(t)$ flows, discharging C_{1} and charging C_{2}.
a) Derive the differential equation for $i(t)$. Hint: write an equation in terms of i and integrals of i, then differentiate the whole equation.
Write your DE in this form: Constant $=x(t)+\tau \cdot \frac{d}{d t} x(t)$
What is the time constant (τ) ?

b) Find $\mathrm{i}(\mathrm{t})$ given $\mathrm{C}_{1}:=24 \cdot \mu \mathrm{~F}$
$\mathrm{C}_{2}:=12 \cdot \mu \mathrm{~F}$
$\mathrm{R}:=400 \cdot \Omega$
${ }^{\mathrm{v}_{\mathrm{C}}} 1(0)=18 \cdot \mathrm{~V}$
${ }^{\mathrm{v}} \mathrm{C} 2(0)=0 \cdot \mathrm{~V}$
c) Find $v_{\mathrm{C} 2}(\mathrm{t})$ for the same values. Hint: The trick here will be finding the final condition. Realize that charge will be conserved. If C_{1} discharges x coulombs, then C_{2} will charge x coulombs. Charges will stop flowing when $\mathrm{v}_{\mathrm{C} 1}=\mathrm{v}_{\mathrm{C} 2}$. It may help to think of two water tanks, one with half the cross-sectional area of the other.

$$
\mathrm{V}=\frac{\mathrm{Q}}{\mathrm{C}}
$$

d) Find the initial and final stored energy of the system $\left(\mathrm{W}_{\mathrm{C} 1}+\mathrm{W}_{\mathrm{C} 2}\right)$ to find the total "loss". What happened to that energy?

