\qquad

1. A 12 V car ignition coil has an inductance of 20 mH and resistance of 1.5Ω (so its equivalent circuit is a 20 mH inductor in series with a 3Ω resistor). Calculate how long it takes the current to build up to 95% of its maximum value after a 12 V battery is connected to the coil.
2. A constant voltage is applied to a series RL circuit by closing a switch. The voltage across L is 40 volts at $t=0$ and drops to 8 volts at $t=.004 \mathrm{sec}$. If $\mathrm{L}=0.1 \mathrm{H}$, what must be the value of R ?
3. In the circuit shown, the switch is closed at $t=0$. Find the transient current expression.

4. In the circuit shown, the switch is closed on position 1 at $\mathrm{t}=0$, and then instantly moved to position 2 after 2 milliseconds. Find the time at which the current is zero and reversing its direction.

ECE 2210/00 homework 1stTr2 p3

5. The switch has been open (not making contact) for a long time and is switched closed (as shown) at time $t=0$. a) Find the complete expression for $i_{L}(t)$.

b) Find i_{L} at time $\mathrm{t}=1.2 \tau . \quad \mathrm{i}_{\mathrm{L}}(1.2 \cdot \tau)=? \quad 120 \cdot \mathrm{~mA}-80 \cdot \mathrm{~mA} \cdot \mathrm{e}^{-1.2}=95.9 \cdot \mathrm{~mA}$
c) At time $t=1.2 \tau$ the switch is opened again. Find the complete expression for $i_{L}\left(t^{\prime}\right)$, where t^{\prime} starts when the switch opens. Be sure to clearly show the time constant.

Answers

$\frac{\mathrm{t}}{0.17 \cdot \mathrm{~ms}}$
c) $40 \cdot \mathrm{~mA}+56 \cdot \mathrm{~mA} \cdot \mathrm{e}^{-\frac{1}{90 \cdot \mu \mathrm{~s}}}$

