

b) Write a differential equation for $v_{\rm C}$.

c) Find the characteristic equation for the circuit shown.

ECE 2210 homework 2ndTr2 p2

- 1. A series RLC circuit with R = 200 Ω , L = 0.1 H and C = 100 μ F has a constant voltage
 - V = 20 volts applied at t = 0. The capacitor has no initial charge.
 - a) Find the characteristic equation of the circuit at right. (hint: take i(t) as the "output")

- b) Find the solutions to the characteristic equation.
- c) Is this circuit over, under, or critically damped?
- d) The switch is switched down at time t = 0. Find the final and initial conditions: final: $i(\infty)$ initial: i(0), $v_{C}(0)$ and $\frac{d}{dt}i(0)$

e) Write the full expression for i(t), including all the constants that you find.

2. A series RLC circuit with $R = 200 \ \Omega$, $L = 0.1 \ H$ and $C = ? \ \mu F$ is to be made critically damped by the selection of the capacitance. Find the required value of C.

3. Find the ringing frequency of a series RLC circuit in which $R = 200 \ \Omega$, $L = 0.1 \ H$ and $C = 5 \ \mu F$. (The ringing frequency is the ω part of $s_1 = \alpha + j\omega$). Express your answer in Hz.

5. The characteristic equation of the circuit shown is: $0 = s^{2} + \left(\frac{R_{1}}{L} + \frac{1}{C \cdot R_{2}}\right) \cdot s + \left(\frac{R_{1}}{L \cdot C \cdot R_{2}} + \frac{1}{L \cdot C}\right)$

a) Find the solutions to the characteristic equation.

b) Is this circuit over, under, or critically damped?

c) The switch has been in the top position for a long time and is switched down at time t = 0. Find the final and initial conditions: d) Write the full expression for $i_L(t)$, including all the constants that you find.

