$V_{S} =$

Note for ALL Homeworks: You may work them out on your own paper, but the grader would appreciate it if showed your work on the provided pdf or printout of the pdf. You **MUST Show your work to get credit. Circle answers.**

- c) $V_R := 12 \cdot V$ $R := 1.5 \cdot k\Omega$ I = ?
- 2. Power and Ohm's law. Same circuit as above. For each of the cases below, find the missing values.

a)	$I := 5 \cdot mA$	$\mathbf{R} := 2 \cdot \mathbf{k} \mathbf{\Omega}$	V _R =	$P_R =$
b)	$V_{R} = 25 V$	$\mathbf{R} := 100 \cdot \boldsymbol{\Omega}$	I =	$P_R =$
c)	$V_{R} = 20 \cdot V$	$I := 0.01 \cdot A$	R =	P _R =

Ignore the fact that the following items run on AC

- d) $P_R := 900 \cdot W$ $V_R := 120 \cdot V$ I = R = Toaster
- e) $P_R := 1500 \cdot W$ $R := 9.6 \cdot \Omega$ $I = V_S =$ Hair drier

f)
$$P_R := 2500 \cdot W$$
 I := 10.5 · A R =
Electric oven

 Find the equivalent resistance a) of each of these networks, i.e. what would an ohmmeter read if hooked to the terminals.

Name: ___

4. Do as much as you can of homework DC3 now, otherwise you will find that homework to be a bit long.

<u>An</u>	swe	rs		
4	-)	D	 100	\sim

		D 0110		``	D . 5120			
3.	a)	$R_{eq} = 10.9 kG$	Ω	b)	R _{eq} = $390 \cdot \Omega$	c) R $_{eq} = 160 \cdot \Omega$		
	d)	I = 7.5 · A	$\mathbf{R} := 16 \cdot \boldsymbol{\Omega}$	e)	$I := 12.5 \cdot A V_{S} := 12$	$0 \cdot V$ f) R := 22.7 · Ω	$V_{S} = 238 \cdot V$	
2.	a)	$V_{R} = 10 \cdot V$	$P_R := 50 \cdot mW$	b)	$I := 0.25 \cdot A P_R := 6.2$	5·W c) $R := 2.0 \cdot k\Omega$	$P_R := 200 \cdot mW$	
1.	a)	$R = 400 \cdot \Omega$		b)	$V_{R} = 28 V$	c) I := $8 \cdot mA$		