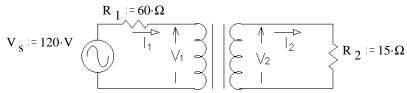

Name		ECE 2210 Homework		PA2 Due: Thur, 12/7/23 f May be handed until, Tue, 12/12				
	ote: In the following problems, you may assume						e, 12/12	
1.	Read sections 2.28, & 3.8 in your textbook.	Note: His secon	dary windings and	current	s are back	wards.		
2.	An ideal transformer has 330 turns on the prim connected across a $110~\mathrm{V}$ (rms) generator, while			condary.	If the prim	nary is		
3.	A transformer has $N_1 = 320 \ \text{turns}$ and $N_2 = 1000 \ \text{is}$ developed across the secondary coil?	O turns. If the inpu	ut voltage is v(t) =	(255 V)co	os(ωt), wha	t rms volta	ge	
4.	A step-up transformer is designed to have an output voltage of $2200~\rm V$ (rms) when the primary is connected across a $240~\rm V$ (rms) source.							
	a) If there are 150 turns on the primary winding many turns are required on the secondary?	g, how						
	b) If a load resistor across the secondary draw what is the current in the primary, assuming							
5.	The primary current of an ideal transformer is 8 voltage is 80 V. 1.0 A is delivered to a load ressecondary. Calculate the voltage across the s	sistor connected t	•					
6.	An ideal transformer has a turns ratio (N = $N_{\rm l}/N_{\rm l}$ a) Find the secondary and primary currents.	N_2) of 1.5 . It is de	esired to operate a	a 200 Ω i	esistive lo	ad at 150 V	' (rms).	
	b) Find the source voltage (V_1) .							
	c) Find the power dissipated in the load resisto	or and the power o	delivered to the pr	imary fro	m the sou	rce.		
	d) Find the impedance the source sees looking calculating $V_1 / I_1.$	g into the primary	winding by calcula	ating \mathbf{Z}_{eq}	$=$ N^2 $oldsymbol{Z_L}$ ar	nd again by	/	

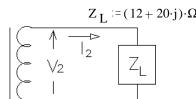

ECE 2210 homework PA2 p2

7. For the ideal transformer shown in the figure, find $v_o(t)$ if $v_s(t)$ is $320V\cos(377t)$.

8. The transformer shown in the circuit below is ideal. It is rated at 120/30 V, 80 VA, 60 Hz Find the following:

a) $I_1 = ?$

b)
$$V_2 = ?$$


ECE 2210 homework PA2 p3

9. A transformer is rated at 13,800/480 V, 60 kVA, 60 Hz. (Note: kVA stands for kilo-Volt-Amp, in this case it is the transformer's voltage rating times its current rating.) Find the allowable primary and secondary currents at a supply voltage of 12,000 V at 100% power factor. Repeat for a power factor of 50%.

10.	An ideal transformer has a rating of $500/125~V$, $10~kVA$, $60~Hz$. It is loaded with an impedance of 5Ω at $80\%~pf$ (0.80) . The source voltage applied to the primary winding is $440~V$ (rms). Find: a) the load voltage
	b) the load current
	c) the kVA delivered to load
	d) the power delivered to load
	e) the primary current
	f) the power factor of primary
	g) the impedance the source sees looking into primary.
11.	An ideal transformer is rated to deliver $400~\rm kVA$ at $460~\rm V$ to a customer. a) How much current can the transformer supply to the customer?
	b) If the customer's load is purely resistive (i.e. if the $pf=1$), what is the maximum power the customer can receive?
	c) If the customer's power factor is 0.8 (lagging), what is the maximum usable power the customer can receive?
	d) What is the maximum power if the power factor is 0.7 (lagging)?
	e) If the customer requires 300 kW to operate, what is the minimum allowable power factor given the rating of this transformer?

ECE 2210 homework PA2 p4

- 12. The transformer shown in the circuit is ideal. It is rated at 240/80 V, 100 VA, 60 Hz, Find:
- $V_S := 120 \cdot V$

a) The primary current (magnitude). $|\mathbf{I}_1|$

- b) The primary voltage (magnitude).
- c) The secondary voltage (magnitude).
- d) The power supplied by the source (Vs). $P_S = ?$
- e) The power factor as seen by the source (Vs). leading or lagging?
- f) Is this transformer operating within its ratings? Show your evidence.

Answers

- 2. 12 V 3. 563 V
- 4. a) 1375 turns
- 5. 680 V
- b) 11 A
- 6. a) 0.75 A, 0.50 A c) 112.5 W
- b) 225 V d) 450Ω

- 7. 78Vcos(377t)
- 8. a) 0.4·A
- b) 24V
- 9. 4.35 A, 125 A any pf, (Using the transformer at a lower voltage does not increase its current rating.)
 - f) 0.80

12. a) 0.515·A

- 10. a) 110 V b) 22 A
 - c) 2.42 kVA
- d) 1.94 kW
- e) 5.5 A
- g) $80\Omega / 36.9^{\circ}$ Ω

- 11. a) 870·A b) 400·kW c) 320·kW d) 280·kW e) 0.75
- d) 39.25·W
- e) 0.635 lagging

f) NO,
$$I_{1max} = \frac{100 \cdot VA}{240 \cdot V} = 0.417 \cdot A < 0.515 \cdot A$$

b) 108·V c) 36·V