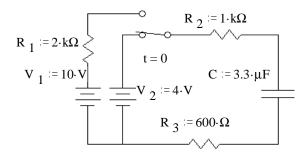

Name

1. A 10-microfarad capacitor has been charged to a potential of 150 volts. A resistor of $25~\Omega$ is then connected across the capacitor through a switch. When the switch has been closed for 10 time constants the total energy dissipated by the resistor is most nearly (An FE style problem)


- (A) 1.0×10^{-7} joules
- (B) 1.1 x 10⁻¹ joules
- (C) 9.0×10^{1} joules
- (D) 1.1×10^3 joules
- (E) 9.0×10^3 joules

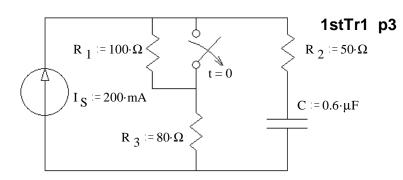
2. a) The switch is closed at time t = 0 and $v_C(0) = 0V$, find $v_C(t)$.

- b) What is the value of the voltage across C at $t = 40 \mu s$
- 3. In the circuit shown, the switch has been in the upper position for a long time and is switched down at time t = 0.a) Find the initial and final capacitor voltages.

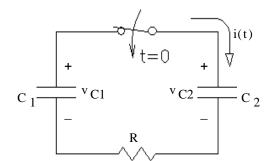

$$v_{C}(0) = ?$$
 $v_{C}(\infty) = ?$

b) Find the time constant. (after t = 0)

- 3. continued c) Find $v_C(t)$. (always after t = 0)
 - d) At what time is $v_C = 5 \text{ V}$?


4. a) What will be the final value of v_C ? $v_C(\infty) = ?$ Hint: Use a Thevenin equivalent circuit.

b) What is the time constant of this circuit?


c) Find $\boldsymbol{v}_{\boldsymbol{C}}(t).$ The switch had been open for a long time before t=0.

- 5. The switch has been closed for a long time and is opened (as shown) at time t = 0.
 - a) Find the initial and final conditions and write the full expression for $v_C(t), \, \mbox{including all the constants that you find.}$

- b) What is v_C when $t = 0.8\tau$? $v_C(0.8 \cdot \tau) = ?$
- c) At time $t=0.8\tau$ the switch is closed again. Find the complete expression for $v_C(t')$, where t' starts when the switch closes. Be sure to clearly show the time constant.

6. In a circuit with two capacitors, the left capacitor (C₁) has an initial charge and the right capacitor (C2) does not. When the switch is closed at time t = 0, current i(t) flows, discharging C_1 and charging C_2 .

a) Derive the differential equation for i(t). Hint: write an equation in terms of i and integrals of i, then differentiate the whole equation.

Write your DE in this form: Constant = $x(t) + \tau \frac{d}{dt}x(t)$

What is the time constant (τ) ?

b) Find i(t) given $C_1 := 24 \cdot \mu F$ $C_2 := 12 \cdot \mu F$ $R := 400 \cdot \Omega$ $v_{C1}(0) = 18 \cdot V$

$$C_2 := 12 \cdot \mu I$$

$$R = 400 \cdot \Omega$$

$$v_{C1}(0) = 18 \cdot V$$

$$v_{C2}(0) = 0.V$$

c) Find $v_{C2}(t)$ for the same values. Hint: The trick here will be finding the final condition. Realize that charge will be conserved. If C₁ discharges x coulombs, then C₂ will charge x coulombs. Charges will stop flowing when $v_{C1} = v_{C2}$. It may help to think of two water tanks, one with half the cross-sectional area of the other.

d) Find the initial and final stored energy of the system $(W_{C1} + W_{C2})$ to find the total "loss". What happened to that energy?