1. Find the transfer function $\mathbf{H}(\mathrm{s})=\frac{\mathbf{V}_{\mathbf{0}}(\mathrm{s})}{\mathbf{V}_{\mathbf{i}}(\mathrm{s})} \quad \begin{array}{r}\text { for these circuits. } \\ \text { Write } \mathbf{H}(\mathrm{s}) \text { in the normal form: } \quad \mathbf{H}(\mathrm{s})=\mathrm{K} \cdot \frac{s^{n}+k_{1} \cdot s^{n-1}+\cdots+k_{n-1}}{s^{m}+c_{1} \cdot s^{m-1}+\cdots+c_{m-1}}\end{array}$

b)

2. Write the characteristic equation for each of the circuits in problem 2.
a)
b)

ECE 2210 homework 2ndTr1 p2

3. a) Find the s-type transfer function of the circuit shown. $\mathbf{I}_{\mathbf{i n}}$ is the input and $\mathbf{V}_{\text {out }}$ is the "output". You MUST show work to get credit. Simplify your expression for $\mathbf{H}(\mathrm{s})$ so that it is a ratio of simple polynomials just like my examples.
a) $\mathbf{H}(\mathrm{s})=$?

b) Find the solutions to the characteristic equation and express them in terms of the circuit parts.

Answers

More on next page ===>
1.a) $\mathbf{H}(\mathrm{s})=\frac{s^{2}+\frac{R}{L} \cdot s}{s^{2}+\frac{R}{L} \cdot s+\frac{1}{L \cdot C}}$
b) $\mathbf{H}(\mathbf{s})=\frac{s^{2}}{s^{2}+\frac{1}{C \cdot R} \cdot s+\frac{1}{L \cdot C}}$
3.b) $-\frac{1}{2 \cdot \mathrm{C} \cdot \mathrm{R}_{2}} \pm \frac{1}{2} \cdot \sqrt{\left(\frac{1}{\mathrm{C} \cdot \mathrm{R}_{2}}\right)^{2}-4 \cdot \frac{1}{\mathrm{C} \cdot \mathrm{L}}}$
4.a) $240 \cdot \Omega \cdot \mathrm{~s}^{2}+2 \cdot 10^{5} \cdot \frac{\Omega}{\mathrm{sec}} \cdot \mathrm{s}+1.2 \cdot 10^{10} \cdot \frac{\Omega}{\sec ^{2}}$

$$
\mathrm{s}^{2}+5 \cdot 10^{7} \cdot \frac{1}{\sec ^{2}}
$$

b) $240 \cdot \Omega$
c) $240 \cdot \Omega$
e) underdamped
2.a) $0=s^{2}+\frac{\mathrm{R}}{\mathrm{L}} \cdot \mathrm{s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}$
b) $0=s^{2}, \frac{1}{}+\frac{\left.P^{\prime} 1\right)}{C \cdot R} \cdot s+\frac{1}{L \cdot C}$
3.a) $\frac{\frac{1}{\mathrm{C}} \cdot \mathrm{s}}{\mathrm{s}^{2}+\frac{1}{\mathrm{C} \cdot \mathrm{R}_{2}} \cdot \mathrm{~s}+\frac{1}{\mathrm{C} \cdot \mathrm{L}}}$
d) $\frac{\frac{1}{240 \cdot \Omega} \cdot \mathrm{~s}^{2}+2.083 \cdot 10^{5} \cdot \frac{1}{\Omega \cdot \sec ^{2}}}{\mathrm{~s}^{2}+833.333 \cdot \frac{1}{\sec \cdot \mathrm{~s}+5 \cdot 10^{7} \cdot \frac{1}{\sec ^{2}}} \quad \text { solutions to char. eq }} \quad \begin{aligned} & -417+7059 \cdot j 1 / \mathrm{sec}\end{aligned}$
f) $\mathrm{R} 0.1 \cdot \mathrm{~A}$
g) $\mathrm{R} 0.1 \cdot \mathrm{~A}$

L $0 \cdot \mathrm{~A}$
C 0.1•A
L 0.1•A
C 0•A ECE 2210
homework 2ndTr1

ECE 2210 homework 2ndTr1 p3

4. For the circuit shown, with a disconnected source:
a) Find the generalized impedance of the circuit, $\mathbf{Z}(\mathrm{s})$. (This is just the equivalent impedance of R, L \& C.)

b) What is the impedance at $\mathbf{s}=0$? (DC)
c) What is the impedance at $\mathbf{s}=\infty$? (infinite frequency)

ECE 2210 homework 2ndTr1 p4

d) When the switch is closed, current will begin to flow. The voltage source is the input and the current through R can be considered the "output" (i.e. caused by the input). Find the transfer function of the circuit and the s-solutions to the characteristic equation.
e) What is the character of the response? i) undamped $\begin{array}{lll}\text { ii) underdamped } & \text { iii) critically damped } & \text { iv) overdamped }\end{array}$
f) Find the initial values of all three currents.
g) Find the final values of all three currents

