4. In the circuit shown, when the switch is opened, the current $\mathrm{I}_{\text {in }}$ (current source) is forced to flow through the circuit.
a) Write a differential equation for i_{L}. Hint: use LaPlace impedance method.

b) Write a differential equation for v_{C}.
c) Find the characteristic equation for the circuit shown.

ECE 2210 homework 2ndTr2 p2

1. A series RLC circuit with $\mathrm{R}=200 \Omega, \mathrm{~L}=0.1 \mathrm{H}$ and $\mathrm{C}=100 \mu \mathrm{~F}$ has a constant voltage $\mathrm{V}=20$ volts applied at $\mathrm{t}=0$. The capacitor has no initial charge.
a) Find the characteristic equation of the circuit at right. (hint: take $\mathrm{i}(\mathrm{t})$ as the "output")

b) Find the solutions to the characteristic equation.
c) Is this circuit over, under, or critically damped?
d) The switch is switched down at time $t=0$. Find the final and initial conditions: final: $\mathrm{i}(\infty)$ initial: $\mathrm{i}(0), \quad{ }^{\mathrm{v}} \mathrm{C}(0)$ and $\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i}(0)$
e) Write the full expression for $i(t)$, including all the constants that you find.
2. A series RLC circuit with $\mathrm{R}=200 \Omega, \mathrm{~L}=0.1 \mathrm{H}$ and $\mathrm{C}=$? $\mu \mathrm{F}$ is to be made critically damped by the selection of the capacitance. Find the required value of C.
3. Find the ringing frequency of a series RLC circuit in which $\mathrm{R}=200 \Omega, \mathrm{~L}=0.1 \mathrm{H}$ and $\mathrm{C}=5 \mu \mathrm{~F}$. (The ringing frequency is the ω part of $\mathrm{s}_{1}=\alpha+\mathrm{j} \omega$). Express your answer in Hz .
4. The characteristic

ECE 2210 homework 2ndTr2 $\begin{aligned} & \text { equation of the } \\ & \text { circuit shown is: }\end{aligned} \quad 0=s^{2}+\left(\frac{R_{1}}{L}+\frac{1}{C \cdot R_{2}}\right) \cdot s+\left(\frac{R_{1}}{L \cdot C \cdot R_{2}}+\frac{1}{L \cdot C}\right)$
a) Find the solutions to the characteristic equation.

b) Is this circuit over, under, or critically damped?
c) The switch has been in the top position for a long time and is switched down at time $t=0$. Find the final and initial conditions:
d) Write the full expression for $i_{L}(t)$, including all the constants that you find.

Answers

1. a) $\frac{R}{L} \cdot \frac{d}{d t} i i_{i n}=\frac{d^{2}}{d t^{2}} i^{i} L^{+} \frac{R}{L} \cdot \frac{d}{d t} i L^{+}+\frac{1}{L \cdot C} \cdot i \frac{L}{}$
b) $\frac{R}{L \cdot C} \cdot i_{\text {in }}=\frac{d^{2}}{d t^{2}} v_{c}+\frac{R}{L} \cdot \frac{d}{d t} v_{c}+\frac{1}{L C} \cdot v_{c}$
c) $s^{2}+\frac{R}{L} \cdot s+\frac{1}{L \cdot C}=0$
2. a) $0=s^{2}+\frac{R}{L} \cdot s+\frac{1}{L C C}$
b) $-51.3 \cdot \frac{1}{\mathrm{sec}}$
3. $\frac{1}{\sec }$
c) overdamped
d) $\mathrm{i}(\infty)=0 \cdot \mathrm{~A} \quad \mathrm{i}(0)=0 \quad \mathrm{~V}_{\mathrm{C}}(0)=0$
$\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i}(0)=200 \cdot \frac{\mathrm{~A}}{\sec }$
e) $i(t)=0.1054 \cdot e^{-\frac{51.3}{\sec } t}-0.1054 \cdot e^{-\frac{1949}{\sec } \cdot t}$
4. $10 \cdot \mu \mathrm{~F}$

4. $159 \cdot \mathrm{~Hz}$

5. a) $-573.1 \pm 1611 \mathrm{j} 1 / \mathrm{sec}$
b) underdamped
c) $19 . \mathrm{V} \quad 100 \cdot \mathrm{~mA}$
$3.8 \cdot \mathrm{~V} \quad 20 \cdot \mathrm{~mA} \quad 0 \cdot \frac{\mathrm{~V}}{\mathrm{sec}} \quad 1600 \cdot \frac{\mathrm{~A}}{\mathrm{sec}}$
d) $i_{L}(t):=100 \cdot m A+e^{\frac{-573.1}{\sec } \cdot t} \cdot\left(-80 \cdot \cos \left(\frac{1611}{\sec } \cdot t\right)+964.7 \cdot \sin \left(\frac{1611}{\sec } \cdot t\right)\right) \cdot \mathrm{mA}$

