2nd - Order Transients

Name

- 4. In the circuit shown, when the switch is opened, the current ${\rm I_{in}}$ (current source) is forced to flow through the circuit.
 - a) Write a differential equation for $i_{\rm L}.\,$ Hint: use LaPlace impedance method.

b) Write a differential equation for $\boldsymbol{v}_{\!C}\!.$

c) Find the characteristic equation for the circuit shown.

ECE 2210 homework 2ndTr2 p2

- 1. A series RLC circuit with $R=200~\Omega,~L=0.1~H$ and $C=100~\mu F$ has a constant voltage V=20 volts applied at t=0. The capacitor has no initial charge.
 - a) Find the characteristic equation of the circuit at right. (hint: take i(t) as the "output")

- b) Find the solutions to the characteristic equation.
- c) Is this circuit over, under, or critically damped?
- d) The switch is switched down at time t = 0. Find the final and initial conditions: final: $i(\infty)$ initial: i(0), $v_{C}(0)$ and $\frac{d}{dt}i(0)$

e) Write the full expression for i(t), including all the constants that you find.

2. A series RLC circuit with $R=200~\Omega,~L=0.1~H$ and $C=?~\mu F$ is to be made critically damped by the selection of the capacitance. Find the required value of C.

3. Find the ringing frequency of a series RLC circuit in which $R=200~\Omega,~L=0.1~H$ and $C=5~\mu F$. (The ringing frequency is the ω part of $s_1=\alpha+j\omega$). Express your answer in Hz.

5. The characteristic ECE 2210 homework 2ndTr2 p4

The characteristic equation of the circuit shown is:

$$0 = s^2 + \left(\frac{R_1}{L} + \frac{1}{C \cdot R_2}\right) \cdot s + \left(\frac{R_1}{L \cdot C \cdot R_2} + \frac{1}{L \cdot C}\right)$$

a) Find the solutions to the characteristic equation.

- b) Is this circuit over, under, or critically damped?
- c) The switch has been in the top position for a long time and is switched down at time t=0. Find the final and initial conditions:

time (ms)

d) Write the full expression for $i_L(t)$, including all the constants that you find.

1. a)
$$\frac{R}{L} \cdot \frac{d}{dt} i_{in} = \frac{d^2}{dt^2} i_L + \frac{R}{L} \cdot \frac{d}{dt} i_L + \frac{1}{L \cdot C} \cdot i_L$$
 b) $\frac{R}{L \cdot C} \cdot i_{in} = \frac{d^2}{dt^2} v_c + \frac{R}{L} \cdot \frac{d}{dt} v_c + \frac{1}{L \cdot C} \cdot v_c$ c) $s^2 + \frac{R}{L} \cdot s + \frac{1}{L \cdot C} = 0$

2. a)
$$0 = s^2 + \frac{R}{L} \cdot s + \frac{1}{L \cdot C}$$
 b) $-51.3 \cdot \frac{1}{sec}$ $-1949 \cdot \frac{1}{sec}$ c) overdamped d) $i(\infty) = 0 \cdot A$ $i(0) = 0$ $V_{C}(0) = 0$ $\frac{d}{dt}i(0) = 200 \cdot \frac{A}{sec}$ e) $i(t) = 0.1054 \cdot e^{-\frac{51.3}{sec} \cdot t} - 0.1054 \cdot e^{-\frac{1949}{sec} \cdot t}$

3. 10·μF 4. 159·Hz

ECE 2210

5. a) -573.1 ± 1611j 1/sec b) underdamped c) 19·V 100·mA 3.8·V 20·mA
$$0 \cdot \frac{V}{\text{sec}}$$
 1600· $\frac{A}{\text{sec}}$

d)
$$i_L(t) := 100 \cdot \text{mA} + e^{\frac{-573.1}{\text{sec}} \cdot t} \cdot \left(-80 \cdot \cos\left(\frac{1611}{\text{sec}} \cdot t\right) + 964.7 \cdot \sin\left(\frac{1611}{\text{sec}} \cdot t\right) \right) \cdot \text{mA}$$

homework 2ndTr2 p5

