Name: \qquad
Scan your homework and convert to a pdf file. Turn in on Canvas. Homework is due by 11:59 p.m. on the due date.
The following problems are not meant to be hard. You should be able to do most of them in your head with no special formulas or calculations. In fact you should find them rather dumb and trivial. That's the point, I want to drill these concepts into your head so that you'll find them easy.

1. The figure at right shows a hydraulic system with a pump that converts rotational energy to fluid energy and two turbines which convert that energy back to rotational energy. Do NOT assume that the turbines are equal in size. This is a closed system containing an incompressible fluid with no places for that fluid to collect; i.e. flow in = flow out of any point or object. Kirchhoff's current law applies. The volumetric fluid flows are indicated by the arrows.

$$
\mathrm{I}_{1}:=0.01 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{I}_{2}:=0.007 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

$$
I_{3}=\square \quad I_{4}=\square \quad I_{5}=\square \quad I_{6}=
$$

2. The figure at right shows an electrical circuit with a battery that converts chemical energy to electrical energy and two resistors which convert that electrical energy to heat energy. Do NOT assume that the resistors are equal in size. All electrical circuits are closed systems containing incompressible charges with no places for those charges to collect; i.e. flow in = flow out of any point or object. Kirchhoff's current law applies. . The electrical currents are indicated by the arrows.

$\mathrm{I}_{1}:=0.01 \cdot \mathrm{~A} \quad \mathrm{I}_{2}:=0.007 \cdot \mathrm{~A}$

$$
I_{3}=\ldots \quad I_{4}=\quad I_{5}=\quad I_{6}=
$$

3. The figure at right shows a similar electrical circuit only now the electrical currents are indicated by the arrows next to the wires. This is a more common way to show the current flow because a little arrow in the wire is too easily confused with the electrical symbol for a diode. You'll learn about diodes later.

$$
\mathrm{I}_{2}:=20 \cdot \mathrm{~mA} \quad \mathrm{I}_{5}:=14 \cdot \mathrm{~mA}
$$

$\mathrm{I}_{6}=$ \qquad $\mathrm{I}_{1}=$ \qquad
$\mathrm{I}_{3}=$ \qquad
$\mathrm{I}_{4}=$ \qquad

$$
\begin{aligned}
& \mathrm{I}_{3}:=0.004 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \\
& \mathrm{I}_{2}=
\end{aligned}
$$

$$
\mathrm{I}_{5}:=0.001 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

$$
\mathrm{I}_{4}=
$$

\qquad

$$
\mathrm{I}_{7}=\square \quad \mathrm{I}_{8}=
$$

ECE 2210 / 00 homework DC1

ECE 2210/00 homework DC1 p2

5.

6. Again, a similar electrical circuit with the electrical current arrows in the more common position, next to the wires.
7.

$$
\mathrm{I}_{6}=\ldots \quad \mathrm{I}_{7}=\quad \mathrm{I}_{8}=\quad \mathrm{I}_{7}=\quad \mathrm{I}_{10}=
$$

8.

$$
I_{6}=_\quad I_{7}=\quad I_{8}=\quad I_{7}=\quad I_{10}=
$$

9.

10.

$\mathrm{I}_{4}:=20 \cdot \mathrm{~mA}$
$I_{1}=$ \qquad
$\mathrm{I}_{5}:=10 \cdot \mathrm{~mA} \quad \mathrm{I}_{6}:=22 \cdot \mathrm{~mA}$ $\mathrm{I}_{3}=$ \qquad
$\mathrm{I}_{2}=$ \qquad
$\mathrm{I}_{7}=$ \qquad
11. Careful here, there are now two pumps. Also, given the flow arrows shown, one or more of the flows must come
out negative.

$\mathrm{I}_{2}:=0.005 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
$\mathrm{I}_{6}:=0.03 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
$\mathrm{I}_{7}:=0.015 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
$\mathrm{I}_{1}=$ \qquad $\mathrm{I}_{3}=$ \qquad
$\mathrm{I}_{4}=$ \qquad $\mathrm{I}_{5}=$ \qquad
12. What does a negative fluid flow physically mean?
13.

$\mathrm{I}_{1}:=0.01 \cdot \mathrm{~A}$
$\mathrm{I}_{5}:=-20 \cdot \mathrm{~mA} \quad \mathrm{I}_{6}:=35 \cdot \mathrm{~mA}$
$\mathrm{I}_{2}=$ \qquad $\mathrm{I}_{3}=$ \qquad
$\mathrm{I}_{4}=$ \qquad
$\mathrm{I}_{7}=$ \qquad
14. What does a negative electrical current physically mean?

$I_{2}=$ \qquad
$\mathrm{I}_{6}=$ \qquad
$\mathrm{I}_{5}:=0.03 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \quad \mathrm{I}_{7}:=0.045 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
$I_{1}=$ \qquad
$\mathrm{I}_{8}=$ \qquad

$$
\mathrm{I}_{10}=
$$

$\mathrm{I}_{11}=$ \qquad

$\mathrm{I}_{8}=$ \qquad

$$
\mathrm{I}_{10}=
$$

17. The figure at right shows the pressure differentials across elements in a hydraulic system. The side indicated by the + sign is the higher pressure side. Conversely, - indicates the lower pressure. $\Delta \mathrm{P}_{\mathrm{S}}$ is the pressure difference supplied by the pump (S for $\underline{\text { Source }}$). $\Delta \mathrm{P}_{2}$ is the pressure difference driving the left turbine and $\Delta \mathrm{P}_{4}$ is the pressure difference driving the right turbine. Assume no pressure losses or discontinuities in the pipes, joints, or corners; i.e. all connected pipes are at exactly the same pressure. Finally, the fluid has no mass, so gravity and Bernoulli can go take a hike.
$\Delta \mathrm{P}_{\mathrm{S}}:=12 \cdot \frac{\mathrm{~N}}{\mathrm{~m}^{2}}=12 \cdot \mathrm{~Pa}$
$\Delta \mathrm{P}_{2}=$ \qquad
$\mathrm{I}_{2}:=50 \cdot \mathrm{~mA} \quad \mathrm{I}_{3}:=30 \cdot \mathrm{~mA}$
$\mathrm{I}_{4}=$ \qquad
$\mathrm{I}_{7}=$ \qquad
$\mathrm{I}_{9}=$ \qquad
$\mathrm{I}_{11}=$ \qquad

Yes, I know that these are ridiculously low pressures for a hydraulic system.
18. The figure at right shows the voltage differentials across elements in an electrical circuit. The side indicated by the + sign is the higher voltage side. Conversely, - indicates the lower voltage. V_{S} is the voltage supplied by the battery. V_{2} is the voltage across the left resistor and V_{4} is the voltage across the right resistor. You may assume no voltage drops across any of the wires or connections in practically all electrical schematics; i.e. all connected wires are at exactly the same voltage (electrical potential).
$\mathrm{V}_{\mathrm{S}}:=12 \cdot \mathrm{~V} \quad(\mathrm{~V}=$ volts $)$

$\mathrm{V}_{2}=$ \qquad

$\Delta \mathrm{P}_{\mathrm{S}}:=400 \cdot \mathrm{kPa}$
$\Delta \mathrm{P}_{5}=$ \qquad $\Delta \mathrm{P}_{1}:=180 \cdot \mathrm{kPa}$
$\Delta \mathrm{P}_{3}:=100 \cdot \mathrm{kPa}$
$\Delta \mathrm{P}_{7}=$ \qquad
20.

$\mathrm{V}_{1}:=10 \cdot \mathrm{~V}$
$\mathrm{V}_{\mathrm{S}}=$ \qquad
$\mathrm{V}_{5}:=3 \cdot \mathrm{~V}$
$\mathrm{V}_{7}:=2 \cdot \mathrm{~V}$
$\mathrm{V}_{3}=$ \qquad

ECE 2210/00 homework DC1
 ps

21.

$\Delta \mathrm{P}_{6}:=60 \cdot \mathrm{kPa}$
closed
$\Delta \mathrm{P}_{\mathrm{S} 1}:=200 \cdot \mathrm{kPa} \quad \Delta \mathrm{P}_{\mathrm{S} 2}:=150 \cdot \mathrm{kPa}$
$\Delta \mathrm{P}_{2}:=50 \cdot \mathrm{kPa}$

$\Delta \mathrm{P}_{4}=$ \qquad $\Delta \mathrm{P}_{7}=$ \qquad
closed
22.

$\mathrm{V}_{\mathrm{S} 1}:=6 \cdot \mathrm{~V} \quad \mathrm{~V}_{2}:=2 \cdot \mathrm{~V}$

$$
\mathrm{V}_{\mathrm{S} 2}=
$$

$$
\begin{gathered}
\mathrm{V}_{6}:=2.4 \cdot \mathrm{~V} \quad \mathrm{v}_{7}:=3.2 \cdot \mathrm{~V} \\
\mathrm{v}_{4}= \\
\end{gathered}
$$

\qquad

$\Delta \mathrm{P}_{3}:=120 \cdot \mathrm{kPa}$
$\Delta \mathrm{P}_{4}:=80 \cdot \mathrm{kPa}$
$\Delta \mathrm{P}_{6}:=110 \cdot \mathrm{kPa}$
$\Delta \mathrm{P}_{\mathrm{S}}=$ \qquad $\Delta \mathrm{P}_{2}=$ \qquad
24. What does a negative pressure difference physically mean?
25.

$\mathrm{V}_{3}:=2.3 \cdot \mathrm{~V}$
$\mathrm{V}_{5}:=0.5 \cdot \mathrm{~V}$
$\mathrm{V}_{6}:=3.2 \cdot \mathrm{~V}$
$\mathrm{V}_{\mathrm{S}}=$ \qquad $V_{2}=$ \qquad
26. Watch your + and - signs very carefully now.

27.

$\mathrm{V}_{\mathrm{S} 1}:=14 \cdot \mathrm{~V} \quad \mathrm{~V}_{\mathrm{S} 2}:=3 \cdot \mathrm{~V} \quad \mathrm{~V}_{2}:=6 \cdot \mathrm{~V} \quad \mathrm{~V}_{3}:=4 \cdot \mathrm{~V}$
$\mathrm{V}_{4}=$ \qquad

$$
\mathrm{V}_{5}=
$$

\qquad
Think about the current through the 2nd battery. What is happening to that battery?

ECE 2210 / O0 homework DC1 p6

$\Delta \mathrm{P}_{1}:=200 \cdot \mathrm{kPa}$
$\Delta \mathrm{P}_{2}:=1100 \cdot \mathrm{kPa}$
$\Delta \mathrm{P}_{3}:=600 \cdot \mathrm{kPa}$
$\Delta \mathrm{P}_{\mathrm{S}}=$ \qquad
$\Delta \mathrm{P}_{9}:=1800 \cdot \mathrm{kPa}$
$\Delta \mathrm{P}_{4}=$ \qquad
$\Delta \mathrm{P}_{5}=$ \qquad $\Delta \mathrm{P}_{6}=$ \qquad
$\Delta \mathrm{P}_{10}=$ \qquad
29.

$\mathrm{V}_{\mathrm{S}}:=18 \cdot \mathrm{~V} \quad \mathrm{~V}_{3}:=6 \cdot \mathrm{~V}$
$\mathrm{V}_{1}=$ \qquad
$\mathrm{V}_{6}=$ \qquad
$\mathrm{V}_{4}:=8 \cdot \mathrm{~V} \quad \mathrm{~V}_{5}:=2 \cdot \mathrm{~V}$
$\mathrm{V}_{2}=$ \qquad
$\mathrm{V}_{9}=$ \qquad

Answers

1. $\mathrm{I}_{3}=\mathrm{I}_{4}=\mathrm{I}_{5}:=0.003 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \quad \mathrm{I}_{6}:=0.01 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
2. $\mathrm{I}_{3}=\mathrm{I}_{4}=\mathrm{I}_{5}:=0.003 \cdot \mathrm{~A}, \quad \mathrm{I}_{6}:=0.01 \cdot \mathrm{~A}$
3. $\mathrm{I}_{6}=\mathrm{I}_{1}:=34 \cdot \mathrm{~mA}, \quad \mathrm{I}_{3}=\mathrm{I}_{4}:=14 \cdot \mathrm{~mA}$
4. $\mathrm{I}_{4}=\mathrm{I}_{6}:=0.001 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \quad \mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{7}=\mathrm{I}_{8}:=0.005 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
5. $\mathrm{I}_{4}=\mathrm{I}_{6}:=1.2 \cdot \mathrm{~mA}, \quad \mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{7}=\mathrm{I}_{8}:=5.7 \cdot \mathrm{~mA}$
6. $\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{8}:=80 \cdot \mathrm{~mA}, \mathrm{I}_{3}:=50 \cdot \mathrm{~mA}, \mathrm{I}_{4}=\mathrm{I}_{5}:=30 \cdot \mathrm{~mA}$
7. $\mathrm{I}_{1}=\mathrm{I}_{10}=\mathrm{I}_{4}=\mathrm{I}_{5}:=0 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \quad \mathrm{I}_{2}=\mathrm{I}_{3}=\mathrm{I}_{7}=\mathrm{I}_{8}:=0.04 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
8. $\mathrm{I}_{1}=\mathrm{I}_{10}=\mathrm{I}_{4}=\mathrm{I}_{5}:=0 \cdot \mathrm{~A}$,
$\mathrm{I}_{2}=\mathrm{I}_{3}=\mathrm{I}_{7}=\mathrm{I}_{8}:=0.06 \cdot \mathrm{~A}$
9. $\mathrm{I}_{1}=\mathrm{I}_{7}:=0.080 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \mathrm{I}_{2}:=0.016 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \mathrm{I}_{3}:=0.064 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
10. $\mathrm{I}_{1}=\mathrm{I}_{7}:=42 \cdot \mathrm{~mA}, \quad \mathrm{I}_{2}:=12 \cdot \mathrm{~mA}, \quad \mathrm{I}_{3}:=30 \cdot \mathrm{~mA}$
11. $\mathrm{I}_{1}:=0.015 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \mathrm{I}_{3}:=0.010 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \mathrm{I}_{4}:=0.045 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \mathrm{I}_{5}:=-0.035 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
12. Actual flow is in direction opposite to the arrow direction.
13. $\mathrm{I}_{2}:=-15 \cdot \mathrm{~mA}, \quad \mathrm{I}_{3}:=25 \cdot \mathrm{~mA}, \quad \mathrm{I}_{4}:=45 \cdot \mathrm{~mA}, \quad \mathrm{I}_{7}:=10 \cdot \mathrm{~mA}$
14.
15. $\mathrm{I}_{1}:=0.155 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \mathrm{I}_{2}:=0.015 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \mathrm{I}_{3}:=0.080 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \mathrm{I}_{6}:=0.045 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \mathrm{I}_{8}:=0.095 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \mathrm{I}_{10}:=0 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}, \mathrm{I}_{11}:=0.060 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}}$
16. $\mathrm{I}_{4}:=14 \cdot \mathrm{~mA}, \quad \mathrm{I}_{5}:=16 \cdot \mathrm{~mA}, \quad \mathrm{I}_{7}:=66 \cdot \mathrm{~mA}, \quad \mathrm{I}_{8}:=80 \cdot \mathrm{~mA}, \quad \mathrm{I}_{9}:=20 \cdot \mathrm{~mA}, \quad \mathrm{I}_{10}:=0 \cdot \mathrm{~mA}, \quad \mathrm{I}_{11}:=20 \cdot \mathrm{~mA}$
17. $\Delta \mathrm{P}_{2}=\Delta \mathrm{P}_{4}:=12 \cdot \mathrm{~Pa}$
18. $\mathrm{V}_{2}=\mathrm{V}_{4}:=12 \cdot \mathrm{~V}$
19. $\Delta \mathrm{P}_{5}:=100 \cdot \mathrm{kPa}, ~ \Delta \mathrm{P}_{7}:=120 \cdot \mathrm{kPa}$
20. $\mathrm{V}_{\mathrm{S}}:=15 \cdot \mathrm{~V}, \mathrm{~V}_{3}:=3 \cdot \mathrm{~V}$
21. $\Delta \mathrm{P}_{4}:=0 \cdot \mathrm{kPa}, \Delta \mathrm{P}_{7}:=40 \cdot \mathrm{kPa}$
22. $\mathrm{V}_{\mathrm{S} 2}:=7.6 \cdot \mathrm{~V}, \mathrm{~V}_{4}:=0 \cdot \mathrm{~V}$
23. $\Delta \mathrm{P}_{\mathrm{S}}:=200 \cdot \mathrm{kPa}, \Delta \mathrm{P}_{2}:=90 \cdot \mathrm{kPa}, \Delta \mathrm{P}_{5}:=-30 \cdot \mathrm{kPa}$
24. The actual $+\&-$ should be reversed from those on drawing
25. $\mathrm{V}_{\mathrm{S}}:=6 \cdot \mathrm{~V}, \mathrm{~V}_{2}:=2.8 \cdot \mathrm{~V}, \mathrm{~V}_{4}:=3.7 \cdot \mathrm{~V}$
26. $\Delta \mathrm{P}_{\mathrm{S} 1}:=280 \cdot \mathrm{kPa}, \Delta \mathrm{P}_{\mathrm{S} 2}:=350 \cdot \mathrm{kPa}, \Delta \mathrm{P}_{5}:=-90 \cdot \mathrm{kPa}$
27. $\mathrm{V}_{4}:=10 \cdot \mathrm{~V}, \mathrm{~V}_{5}:=2 \cdot \mathrm{~V}^{2}, \mathrm{~V}_{6}:=-5 \cdot \mathrm{~V}$ battery is charging
28. $\Delta \mathrm{P}_{\mathrm{S}}:=2000 \cdot \mathrm{kPa}, \Delta \mathrm{P}_{4}:=1200 \cdot \mathrm{kPa}, \Delta \mathrm{P}_{5}:=500 \cdot \mathrm{kPa}$,
$\Delta \mathrm{P}_{6}:=700 \cdot \mathrm{kPa}, \Delta \mathrm{P}_{10}:=0 \cdot \mathrm{kPa}$
29. $\mathrm{V}_{1}:=4 \cdot \mathrm{~V}, \mathrm{~V}_{2}:=8 \cdot \mathrm{~V}^{2}, \mathrm{~V}_{6}:=6 \cdot \mathrm{~V}^{2}, \mathrm{~V}_{9}:=14 \cdot \mathrm{~V}, \mathrm{~V}_{10}:=0 \cdot \mathrm{~V}$
