Name:
Note for ALL Homeworks: You may work them out on your own paper, but the grader would appreciate it if showed your work on the provided pdf or printout of the pdf. You MUST Show your work to get credit. Circle answers.

1. Ohm's law

Consider the figure at right For each of the cases below, find the missing value.

a) I: $=0.01 \cdot \mathrm{~A}$
$\mathrm{V}_{\mathrm{R}}:=4 \cdot \mathrm{~V}$
$\mathrm{R}=$?
b) \quad I $:=50 \cdot \mathrm{~mA}$
$\mathrm{R}:=560 \cdot \Omega$
$\mathrm{V}_{\mathrm{R}}=$?
c) $\quad \mathrm{V}_{\mathrm{R}}:=12 \cdot \mathrm{~V}$
$\mathrm{R}:=1.5 \cdot \mathrm{k} \Omega$
I =?
2. Power and Ohm's law. Same circuit as above. For each of the cases below, find the missing values.
a) I:=5•mA
$\mathrm{R}:=2 \cdot \mathrm{k} \Omega$
$V_{R}=$
$\mathrm{P}_{\mathrm{R}}=$
b) $\quad \mathrm{V}_{\mathrm{R}}:=25 \cdot \mathrm{~V}$
$\mathrm{R}:=100 \cdot \Omega \quad \mathrm{I}=$
$\mathrm{P}_{\mathrm{R}}=$
c) $\mathrm{V}_{\mathrm{R}}:=20 \cdot \mathrm{~V}$
$\mathrm{I}:=0.01 \cdot \mathrm{~A}$
$\mathrm{R}=$
$\mathrm{P}_{\mathrm{R}}=$

Ignore the fact that the following items run on $A C$
d) $\mathrm{P}_{\mathrm{R}}: \underset{\text { Toaster }}{:=900 \cdot \mathrm{~W}} \quad \mathrm{~V}_{\mathrm{R}}:=120 \cdot \mathrm{~V} \quad \mathrm{I}=\square \quad \mathrm{R}=$
e) $\quad \mathrm{P}_{\mathrm{R}}:=\begin{gathered}\text { Hair drier }\end{gathered}$
$\mathrm{R}:=9.6 \cdot \Omega$
I =
$\mathrm{V}_{\mathrm{S}}=$
f) $\quad \mathrm{P}_{\mathrm{R}}:=2500 \cdot \mathrm{~W} \quad \mathrm{I}:=10.5 \cdot \mathrm{~A}$
$\mathrm{R}=$
$\mathrm{V}_{\mathrm{S}}=$
3. Find the equivalent resistance of each of these networks, i.e. what would an ohmmeter read if hooked to the terminals.
a)

b)

c)

d)

4. Do as much as you can of homework DC3 now, otherwise you will find that homework to be a bit long.

Answers

1. a) $\mathrm{R}:=400 \cdot \Omega$
b) $\mathrm{V}_{\mathrm{R}}:=28 \cdot \mathrm{~V}$
c) $\mathrm{I}:=8 \cdot \mathrm{~mA}$
2.

a) $\mathrm{V}_{\mathrm{R}}:=10 \cdot \mathrm{~V} \quad \mathrm{P}_{\mathrm{R}}:=50 \cdot \mathrm{~mW}$
b) $\mathrm{I}:=0.25 \cdot \mathrm{~A} \quad \mathrm{P}_{\mathrm{R}}:=6.25 \cdot \mathrm{~W}$
c) $\mathrm{R}:=2.0 \cdot \mathrm{k} \Omega \quad \mathrm{P}_{\mathrm{R}}:=200 \cdot \mathrm{~mW}$
d) $I:=7.5 \cdot \mathrm{~A}$
$\mathrm{R}:=16 . \Omega$
e) $I:=12.5 \cdot \mathrm{~A} \quad \mathrm{~V}_{\mathrm{S}}:=120 \cdot \mathrm{~V}$
f) $R:=22.7 \cdot \Omega \quad V_{S}:=238 \cdot \mathrm{~V}$
3. a) $\mathrm{R}_{\mathrm{eq}}:=10.9 \cdot \mathrm{k} \Omega$
b) $\mathrm{R}_{\mathrm{eq}}:=390 \cdot \Omega$
c) $R_{\text {eq }}:=160 \cdot \Omega$
d) $\mathrm{R}_{\mathrm{eq}}:=81 \cdot \mathrm{k} \Omega$
e) $\mathrm{R}_{\mathrm{eq}}:=51.3 \cdot \Omega$

