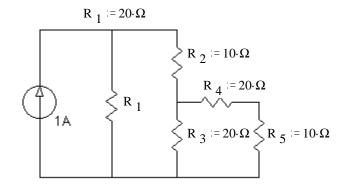

ECE 2210 / 00 homework DC6

Thevenin & Norton equivalent circuits

1. For the circuit shown at right, use Thevenin's theorem to find the current through the $120\mbox{-}\Omega$ resistor, $R_4.$



ECE 2210 / 00 homework DC6 p1

а

ECE 2210 / 00 homework DC6 p2

2. For the circuit shown, use Norton's theorem to find the value of the current in $R_5.\,$ Hint: You can find I_N either by calculation of the open circuit voltage (V_{OC}) and R_N or by direct calculation of the short-circuit current (I_{SC}), however, there is something about the values of the resistors which makes the second method easier than it would at first appear.

Source resistance

- 3. The terminal voltage of a car's battery drops from 12.5 V to 8.5 volts when starting. The starter motor draws 80 A of current.
 - a) Draw the voltage-source model (Thevenin equivalent) of this battery. Include the values of V_S and R_S .

b) Draw the current-source model (Norton equivalent) of this battery. Include the values of ${\rm I}_{\rm S}$ and ${\rm R}_{\rm S}$.

- c) Which of these two models is more appropriate for the car battery?
- d) What terminal voltage would you expect if this battery were being charged at 20 A?