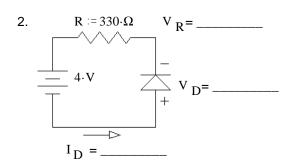
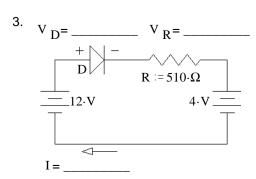
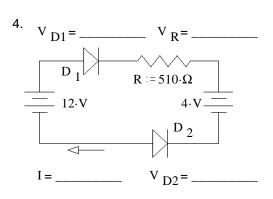
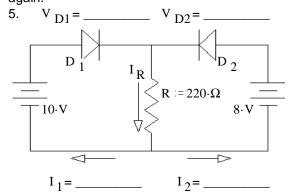

Fill in the blanks in the following circuits. For some of the simple calculations, you may simply write down the answer without showing work. Assume the diodes are silicon with a 0.7V forward voltage drop:

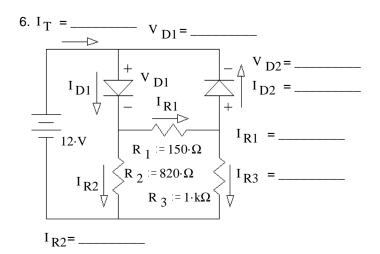

A.Stolp rev c

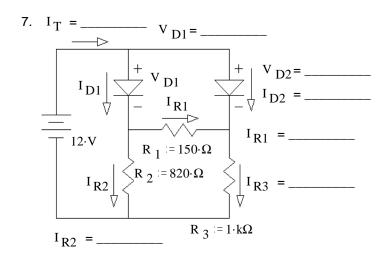


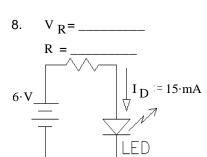

Assume the LEDs have a 2V forward voltage drop:

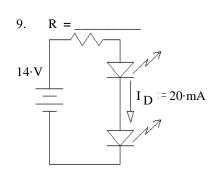


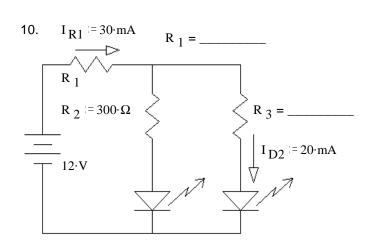
Note: In problems 5 and 6 you'll have to make some assumptions about which diode(s) is/are conducting. Work the problem with those assumptions and see if you arrive at impossible answers. If so, change your assumptions and try again.

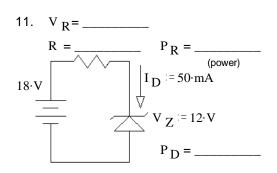


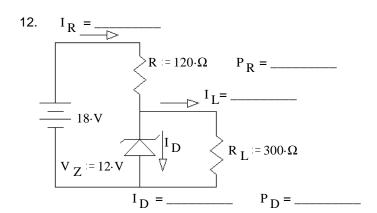

There are four possible assumptions.

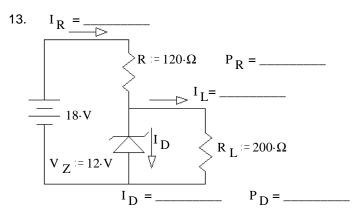

- 1. Neither diode conducts.
- 2. Only D_1 conducts.
- 4. Both diodes conduct.


3. Only D_2 conducts.


4. Both diodes conduct NOTE: You don't have to try all four possibilities. As soon as you find one that works, that's the answer. So make your best guess first.

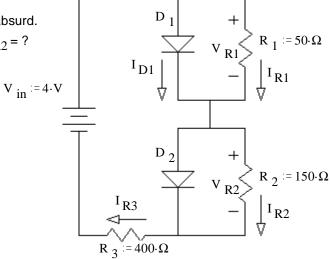






Warning: If ${\rm I}_{\rm D}$ turns out negative, it is actually 0 and you must recalculate everything else.

Answers

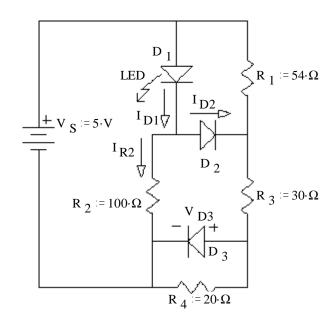

2.
$$I_D := 0.7 \cdot V$$
 $V_R := 3.3 \cdot V$ $I_D := 10 \cdot mA$ 2. $I_D := 0 \cdot mA$ $V_D := -4 \cdot V$ $V_R := 0 \cdot V$ 3. $V_D := 0.7 \cdot V$ $V_R := 7.3 \cdot V$ $I := 14.3 \cdot mA$ 4. $I := 0 \cdot mA$ $V_{D2} := -8 \cdot V$ $V_{D1} := 0 \cdot V$ $V_R := 0 \cdot V$ 5. $V_{D1} := 0.7 \cdot V$ $V_{D2} := -1.3 \cdot V$ $I_1 := 42.3 \cdot mA$ $I_2 := 0 \cdot mA$ 6. $I_{D2} := 0 \cdot mA$ $V_{D1} := 0.7 \cdot V$ $I_{D1} := 0.7 \cdot V$

Two More Pages ---->

d) no $V_{D3} := 0.92 \cdot V > 0.7V$ e) ii) **ECE 2210** homework **DO1** p5

- 14. Assume that diode \mathbf{D}_1 does conduct. $\;$ Assume that diode \mathbf{D}_2 does NOT conduct.
 - a) Find $\boldsymbol{V}_{R1}, \boldsymbol{I}_{R1}, \boldsymbol{I}_{R3}, \boldsymbol{I}_{D1}, \boldsymbol{V}_{R2}$ based on these assumptions. Stick with these assumptions even if your answers come out absurd.

 $V_{R1}=?$ $I_{R1}=?$ $I_{R3}=?$ $I_{D1}=?$ $V_{R2}=?$


- b) Was the assumption about \mathbf{D}_1 correct? yes or no How do you know? (Specifically show a value which is or is not within a correct range.)
- c) Was the assumption about D_2 correct? yes or no How do you know?

15. Assume that diodes D_1 and D_2 DO conduct.

Assume that diode D₃ does **NOT** conduct.

a) Find I_{R2} , I_{D2} , I_{D1} , & V_{D3} based on these assumptions. Stick with these assumptions even if your answers come out absurd.

$$I_{R2} = ? I_{D2} = ? I_{D1} = ? V_{D3} = ?$$

- b) Based on the numbers above, was the assumption about ${\rm D_1}$ correct? yes no How do you know? (Show a value & range.)
- c) Was the assumption about D_2 correct? yes no d) Was the assumption about D_3 correct? yes no How do you know? (Show a value & range.) How do you know? (Show a value & range.)
- e) Based on your answers to parts b), c) & e):

You do not need to justify your answer.

- i) The $\it real \ I_{R2} < I_{R2}$ calculated in part a.
- ii) The *real* $I_{R2} = I_{R2}$ calculated in part a.
- iii) The $\it real \ I_{R2} > I_{R2}$ calculated in part a.