Name:	ECE 2210 / 00	hw Ind	Inductors	ł
1. Find L_{eq} in each case				
a) $L_1 := 2 \cdot mH$	$L_2 := 3 \cdot mH$			
b) $L_1 := 0.22 \cdot mH$ $L_2 := 0.4 \cdot mH$				

b

2. Find the stored energy in each capacitor and/or inductor under steady-state conditions. Note: Treat caps as opens and inductors as shorts to find DC voltages and currents.

3. The current waveform shown below flows through a 2 mH inductor. Make an accurate drawing of the voltage across it. Label your graph.

GO TO Next Page

Answers

 1. 1.2·mH
 0.62·mH
 2. a)
 0.05·mJ
 b)
 1.62·mJ
 0.081·mJ
 0.09·mJ
 0.18·mJ

 3. Straight lines between the following points: (0ms,-8mV), (2ms,-8mV), (2ms,0mV), (3ms,0mV), (3ms,16mV), (5ms,16mV), (5ms,0mV), (6ms,0mV), (9ms,-10.67mV), (9ms,0mV), (10ms,0mV)
 (3ms,0mV), (3ms,16mV), (3ms,16mV), (3ms,16mV), (3ms,16mV), (5ms,16mV), (5ms,0mV), (9ms,-10.67mV), (9ms,0mV), (10ms,0mV)

4. Straight lines between the following points: (0ms,0A), (0.2ms,1.2A), (0.6ms,-0.4A), curves until it's flat at (0.76ms, -0.72A), continues to curve up to (1ms, 0A), (1.1ms,0A)

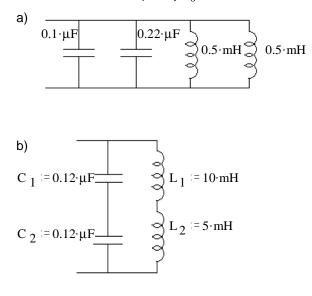
5. $i_L = 11.1 \cdot mA \cdot \cos(300 \cdot t - 90 \cdot \deg)$ 6. $v_L = 1 \cdot mV \cdot \cos\left(628 \cdot t + \frac{1}{4} \cdot \pi\right)^{-7}$

7. Assume a sinusoidal voltage, find i_C and i_L by integration and differentiation, and show that they
 are equal and opposite at the resonant frequency.

8. a) 17.79 kHz b) 5305 Hz ECE 2210 / 00 HW Ind p2

4. The voltage across a 0.5 mH inductor is shown below. Make an accurate drawing of the inductor current. Label your graph. Assume the initial current is 0 mA.

5. The voltage across a 1.2 mH inductor is $v_L = 4 \cdot mV \cdot \cos(300 \cdot t)$ find i_L .


ECE 2210 / 00 homework Ind p4

6. The current through a 0.08 mH inductor is i L = $20 \cdot \text{mA} \cdot \cos\left(628 \cdot t - \frac{\pi}{4}\right)$ find v_L.

7. Refer to the circuit shown. Assume that V_s is a sinusoidal input voltage whose frequency can be adjusted. At some frequency of V_s this circuit can resonate. At that frequency $i_{C}(t) = -i_{L}(t)$. ($i_{C}(t)$ is 180 degrees out-of-phase with $i_{L}(t)$).

8. Find the resonant frequency, f_0 in each case.

