Name
Warning: This homework is longer than normal -- DO NOT put it off until the last minute.
In the week of the exam, lab will be replaced by a video lecture

1. For the circuit shown, find the following:
a) At what frequency would the magnitude of the total impedance be 240Ω ?

b) At this frequency, what is the phase angle of the impedance?
c) At this frequency, you want to add a capacitor in series to make the circuit appear purely resistive (the impedance has no imaginary component). Find the value of the capacitor.

2. You need to design a circuit in which the current (i(t)) leads the voltage $\left(\mathrm{v}_{\mathrm{S}}(\mathrm{t})\right)$ by 36° of phase.
a) What should go in the box: R, L, C ?
b) Find its value.

ECE 2210 Homework Ph3 p1

ECE 2210 homework Ph3 p2

3. The phasor diagram at right shows the source voltage and two branch currents of a parallel circuit. Find the impedance of each of the two branches.

4. a) Find all the currents, $\mathbf{I}_{\mathbf{1}}, \mathbf{I}_{\mathbf{2}}$, and $\mathbf{I}_{\mathbf{T}}$.

5. continued

ECE 2210 homework Ph3 p3

5. a) Find the AC current source, $\mathbf{I}_{\text {in }}$ in polar form.

b) Find $\mathbf{V}_{\mathbf{T}}$.
c) Choose one: i) The source current leads the source voltage.
ii) The source current lags the source voltage.

ECE 2210 homework Ph3 p4

6. a) Find \mathbf{Z}_{1}.

b) To make $\mathbf{Z}_{\mathbf{1}}$ in the simplest way, what part(s) would you need? Just determine the needed part(s) from the list below and state why you made that choice, don't find the values.

ECE 2210 homework Ph3 p5

7. Find \mathbf{Z}.

ECLE Z210 nomework rn3 pb

8. a) Find the total impedance of the circuit.

b) Find $\mathbf{I}_{\mathbf{T}}$.

ECE 2210 homework Ph3 p7

9. Find \mathbf{Z}_{eq} in simple polar form.

$$
\mathrm{f}:=8000 \cdot \mathrm{~Hz}
$$

Answers

1. a) $11 \cdot \mathrm{kHz}$
b) 60°
c) $0.0694 \cdot \mu \mathrm{~F}$
2. a) C
b) $6.12 \cdot \mu \mathrm{~F}$
3. $\mathbf{Z}_{\mathbf{1}}=(19.2-33.3 \cdot \mathrm{j}) \cdot \Omega \quad \mathbf{Z}_{\mathbf{2}}=(46.0+19.6 \cdot \mathrm{j}) \cdot \Omega$
4. a) $(0.197+0.138 \cdot \mathrm{j}) \cdot \mathrm{A}+0.096 \cdot \mathrm{~A}=0.293+0.138 \mathrm{j} \cdot \mathrm{A}$
5. a) $60 / 36.87^{\circ} \mathrm{mA}$
b) $11.54 / \underline{/ 21}^{\circ} \mathrm{V}$
c) i)
6. a) $172 / 53.4^{\circ} \Omega$
b) phase angle >0, resistor and inductor
c) i)
d) ii)
7. $657 \Omega / 67.4^{\circ}$
8. a) $21.86 \Omega /-20.38^{\circ}$
b) $0.457 \mathrm{~A} / 20.38{ }^{\circ}$
9. $382 \Omega /-40.2^{\circ}$
