Appendix, Calculations
Signal
Series RLC Circuit $\quad \mathrm{R}_{\mathrm{T}}:=\mathrm{R}+\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\text {sub }}$
$\mathrm{R}_{\mathrm{T}}:=\mathrm{R}+\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\text {sub }} \quad \quad \mathrm{R}_{\mathrm{S}}:=50 \cdot \Omega$
$\mathrm{R}_{\text {sub }}:=0 \cdot \Omega$
For transient analysis, use the LaPlace s instead of $\mathrm{j} \omega$ for the impedances.
Remember that the LaPlace $s=\alpha+j \omega$
$C:=0.001 \cdot \mu \mathrm{~F}$
Transfer function: $\mathrm{H}(\mathrm{s})=\frac{\mathrm{R}}{\mathrm{Ls}+\mathrm{R}_{\mathrm{T}}+\frac{1}{\mathrm{C} \cdot \mathrm{s}}}=\mathrm{R} \cdot \frac{\mathrm{s}}{\mathrm{L} \cdot \mathrm{s}^{2}+\mathrm{R}_{\mathrm{T}} \cdot \mathrm{s}+\frac{1}{\mathrm{C}}}=\frac{\mathrm{R}}{\mathrm{L}} \cdot \frac{\mathrm{s}}{\mathrm{s}^{2}+\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{L}} \cdot \mathrm{s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}}$
voltage divider
.......
-
$\mathrm{L}:=3.3 \cdot \mathrm{mH}$
$\mathrm{R}:=100 \cdot \Omega$
If you take the denominator of the transfer function and set it equal to zero, you get the characteristic equation:
Characteristic equation: $\quad 0=s^{2}+\frac{\mathrm{R}^{T}}{\mathrm{~L}} \cdot \mathrm{~s}+\frac{1}{\mathrm{~L} \cdot \mathrm{C}}$
$\begin{aligned} & \text { Solve the characteristic equation for } \mathrm{s} \\ & \text { values, using the quadradic equation: }\end{aligned} \quad \mathrm{s}_{1}:=\frac{\frac{-\mathrm{R}}{\mathrm{L}} \mathrm{L}+\sqrt{\left(\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{L}}\right)^{2}-\frac{4}{\mathrm{~L} \cdot \mathrm{C}}}}{2} \quad \mathrm{~s}_{2}:=\frac{\frac{-\mathrm{R}_{\mathrm{T}}}{\mathrm{L}}-\sqrt{\left(\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{L}}\right)^{2}-\frac{4}{\mathrm{~L} \cdot \mathrm{C}}}}{2}$

$$
\text { The time constant is: } \quad \tau:=-\frac{1}{\alpha} \quad \tau=44 \cdot \mu \mathrm{~s}
$$

> Compare these to what you measured.

Critcal Damping happens when the part of s under the radical is $0: \quad\left(\frac{R_{T}}{L}\right)^{2}=\frac{4}{L \cdot C} \quad R_{T}=\sqrt{\frac{L \cdot 4}{C}}=3633 \cdot \Omega$

Parallel RLC Circuit

Impedance of $C, L, \& R_{L}: \quad Z(s)=\frac{1}{C \cdot s+\frac{1}{L \cdot s+R_{L}}}$
Transfer function:
$H(s)=\frac{\mathrm{Z}(\mathrm{s})}{\mathrm{Z}(\mathrm{s})+\mathrm{R}}=\frac{1}{1+\frac{\mathrm{R}}{\mathrm{Z}(\mathrm{s})}}=\frac{1}{1+\mathrm{R} \cdot\left(\mathrm{C} \cdot \mathrm{s}+\frac{1}{\mathrm{~L} \cdot \mathrm{~s}+\mathrm{R}_{L}}\right)}$

$$
\begin{aligned}
& =\frac{1}{1+\mathrm{R} \cdot \mathrm{C} \cdot \mathrm{~s}+\frac{\mathrm{R}}{\mathrm{~L} \cdot \mathrm{~s}+\mathrm{R}_{\mathrm{L}}} \cdot\left(\frac{\mathrm{~L} \cdot \mathrm{~s}+\mathrm{R}_{\mathrm{L}}}{\mathrm{~L} \cdot \mathrm{~s}+\mathrm{R}_{\mathrm{L}}}\right)=\frac{\mathrm{L} \cdot \mathrm{~s}+\mathrm{R}_{\mathrm{L}}}{\mathrm{~L} \cdot \mathrm{~s}+\mathrm{R}_{\mathrm{L}}+\mathrm{R} \cdot \mathrm{C} \cdot \mathrm{~s} \cdot\left(\mathrm{~L} \cdot \mathrm{~s}+\mathrm{R}_{\mathrm{L}}\right)+\mathrm{R}}} \begin{array}{l}
\mathrm{L} \cdot \mathrm{~s}+\mathrm{R}_{\mathrm{L}} \\
=\frac{\left(\frac{1}{\mathrm{R} \cdot \mathrm{C} \cdot \mathrm{~L}}\right)}{\mathrm{C} \cdot \mathrm{~L} \cdot \mathrm{~s}^{2}+\left(\mathrm{L}+\mathrm{R} \cdot \mathrm{C} \cdot \mathrm{R}_{\mathrm{L}}\right) \cdot \mathrm{s}+\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}\right)}\left(\frac{1}{\mathrm{R} \cdot \mathrm{C} \cdot \mathrm{~L}}\right)
\end{array}=\frac{\frac{1}{\mathrm{R} \cdot \mathrm{C}} \cdot \mathrm{~s}+\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R} \cdot \mathrm{C} \cdot \mathrm{~L}}}{\mathrm{~s}^{2}+\left(\frac{1}{\mathrm{R} \cdot \mathrm{C}}+\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{~L}}\right) \cdot \mathrm{s}+\left(\frac{\mathrm{R} \mathrm{~L}}{\mathrm{R} \cdot \mathrm{C} \cdot \mathrm{~L}}+\frac{1}{\mathrm{C} \cdot \mathrm{~L}}\right)}
\end{aligned}
$$

characteristic equation: $0=\left[\mathrm{s}^{2}+\left(\frac{1}{\mathrm{R} \cdot \mathrm{C}}+\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{L}}\right) \cdot \mathrm{s}+\left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R} \cdot \mathrm{C} \cdot \mathrm{L}}+\frac{1}{\mathrm{C} \cdot \mathrm{L}}\right)\right]$
Find solutions to the characteristic eq. as above $s=-\frac{1}{2} \cdot\left(\frac{1}{R \cdot C}+\frac{R_{L}}{L}\right) \pm \frac{1}{2} \cdot \sqrt{\left(\frac{1}{R \cdot C}+\frac{R_{L}}{L}\right)^{2}-4 \cdot\left(\frac{R}{R \cdot C \cdot L}+\frac{1}{C \cdot L}\right) .}$

$$
\alpha:=-\frac{1}{2} \cdot\left(\frac{1}{\mathrm{R} \cdot \mathrm{C}}+\frac{\mathrm{R} \mathrm{~L}}{\mathrm{~L}}\right) \quad \tau=-\frac{1}{\alpha}=0.342 \cdot \mathrm{~ms}
$$

$$
\left.\omega:=\frac{1}{\mathrm{j}} \cdot \frac{1}{2} \cdot \sqrt{\left(\frac{1}{\mathrm{R} \cdot \mathrm{C}}+\frac{\mathrm{R}}{\mathrm{~L}}\right.}\right)^{2}-4 \cdot\left(\frac{\mathrm{R}}{\mathrm{~L}} \mathrm{~L}^{\mathrm{R} \cdot \mathrm{C} \cdot \mathrm{~L}}+\frac{1}{\mathrm{C} \cdot \mathrm{~L}}\right) \quad \mathrm{f}=\frac{\omega}{2 \cdot \pi}=5.9 \cdot \mathrm{kHz}
$$

$$
\begin{aligned}
& \mathrm{s}_{1}=-2.273 \cdot 10^{4}+5.5 \cdot 10^{5} \mathrm{j} \quad \cdot \frac{1}{\sec } \quad \mathrm{~s}_{2}=-2.273 \cdot 10^{4}-5.5 \cdot 10^{5} \mathrm{j} \quad \cdot \frac{1}{\mathrm{sec}} \\
& \mathrm{~s}=\alpha+\mathrm{j} \omega, \mathrm{so}: \quad \alpha:=\frac{-\mathrm{R} \mathrm{~T}}{2 \cdot \mathrm{~L}} \quad \alpha=-22727 \cdot \frac{1}{\mathrm{sec}} \quad \text { and: } \omega:=\frac{1}{2} \cdot \sqrt{\frac{4}{\mathrm{~L} \cdot \mathrm{C}}-\left(\frac{\mathrm{R}}{\mathrm{~T}}\right)^{2}} \quad \omega=5.5 \cdot 10^{5} \cdot \frac{1}{\mathrm{sec}} \\
& e^{\alpha \cdot t} \text { is a decaying exponential } \\
& \mathrm{f}:=\frac{\omega}{2 \cdot \pi} \quad \mathrm{f}=87.5 \cdot \mathrm{kHz}
\end{aligned}
$$

